Menu Close

let-consider-the-numrtical-function-f-x-1-x-2-x-1-calculate-f-n-x-then-give-f-n-0-




Question Number 31546 by prof Abdo imad last updated on 10/Mar/18
let consider the numrtical function  f(x)= (1/(x^2  +x+1))  calculate f^((n)) (x) then give  f^((n)) (0).
letconsiderthenumrticalfunctionf(x)=1x2+x+1calculatef(n)(x)thengivef(n)(0).
Answered by prof Abdo imad last updated on 10/Apr/18
let decompose f(x) inside C(x)  roots of x^2  +x +1 =0  Δ=1−4=−3=(i(√3))^2  ⇒x_1 =((−1 +i(√3))/2) =j  x_2 =((−1−i(√3))/2) =j^−   so  f(x) = (1/((x−j)(x−j^− ))) = (a/(x−j))  +(b/(x−j^− ))  a= (1/(j−j^− )) = (1/(i(√3))) ,b = (1/(j^−  −j)) = (1/(−i(√3))) ⇒  f(x) = (1/(i(√3)))(  (1/(x−j)) − (1/(x−j^− ))) ⇒  f^((n)) (x)= (1/(i(√3)))(  ((1/(x−j)))^n  −((1/(x−j^− )))^n )  = (1/(i(√3)))(   (((−1)^n  n!)/((x−j)^(n+1) ))  −(((−1)^n n!)/((x−j^− )^(n+1) )))  = (((−1)^n n!)/(i(√3)))(   (1/((x−j)^(n+1) )) − (1/((x−j^− )^(n+1) ))) ⇒  f^((n)) (0) = (((−1)^n n!)/(i(√3))) (   (((−1)^(n+1) )/j^(n+1) ) −(((−1)^(n+1) )/j^−^(n+1)  ))  = ((−n!)/(i(√3)))(  ((−j^(n+1)  +j^(−n+1) )/1))= ((n!)/(i(√3)))( j^(n+1)  −j^−^(n+1)  )  =  ((n!)/(i(√3)))( 2i Im(j^(n+1) ) = ((2n!)/( (√3)))  Im(  e^(2i(n+1)(π/3)) ) ⇒  f^((n)) (0) = ((2(n!))/( (√3))) sin(((2(n+1)π)/3)) .
letdecomposef(x)insideC(x)rootsofx2+x+1=0Δ=14=3=(i3)2x1=1+i32=jx2=1i32=jsof(x)=1(xj)(xj)=axj+bxja=1jj=1i3,b=1jj=1i3f(x)=1i3(1xj1xj)f(n)(x)=1i3((1xj)n(1xj)n)=1i3((1)nn!(xj)n+1(1)nn!(xj)n+1)=(1)nn!i3(1(xj)n+11(xj)n+1)f(n)(0)=(1)nn!i3((1)n+1jn+1(1)n+1jn+1)=n!i3(jn+1+jn+11)=n!i3(jn+1jn+1)=n!i3(2iIm(jn+1)=2n!3Im(e2i(n+1)π3)f(n)(0)=2(n!)3sin(2(n+1)π3).

Leave a Reply

Your email address will not be published. Required fields are marked *