Menu Close

let-consider-the-serie-n-1-sin-1-n-x-n-1-find-the-radius-of-convergence-2-study-the-convergence-at-R-and-R-3-let-S-x-its-sum-study-the-continuity-of-S-4-prove-that-1-x-x-1-S-x-0-




Question Number 33359 by caravan msup abdo. last updated on 15/Apr/18
let consider the serie Σ_(n≥1) sin((1/( (√n))))x^n   1) find the radius of convergence  2)study the convergence at −R and R  3) let S(x)its sum study the continuity  of S  4) prove that (1−x)_(x→1^− ) S(x)→0
$${let}\:{consider}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} {sin}\left(\frac{\mathrm{1}}{\:\sqrt{{n}}}\right){x}^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{radius}\:{of}\:{convergence} \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{convergence}\:{at}\:−{R}\:{and}\:{R} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{S}\left({x}\right){its}\:{sum}\:{study}\:{the}\:{continuity} \\ $$$${of}\:{S} \\ $$$$\left.\mathrm{4}\right)\:{prove}\:{that}\:\left(\mathrm{1}−{x}\right)_{{x}\rightarrow\mathrm{1}^{−} } {S}\left({x}\right)\rightarrow\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *