Question Number 33897 by math khazana by abdo last updated on 26/Apr/18
$${let}\:{consider}\:\psi\left({x}\right)=\frac{\Gamma^{'} \left({x}\right)}{\Gamma\left({x}\right)} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\:{a}>\mathrm{0}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \psi\left({a}+{x}\right){dx}={ln}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\forall\:{n}\in\:{N}^{\bigstar} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\psi\left({x}\right){sin}\left(\mathrm{2}\pi{nx}\right){dx}=−\frac{\pi}{\mathrm{2}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18