let-d-be-an-application-d-R-2-R-d-x-y-ln-1-x-y-1-x-y-shown-that-d-is-a-distance-on-R-2-please-help-especially-on-triangular-inequality- Tinku Tara June 4, 2023 Set Theory 0 Comments FacebookTweetPin Question Number 119401 by cantor last updated on 24/Oct/20 \boldsymbollet\boldsymbold\boldsymbolbe\boldsymbolan\boldsymbolapplication\boldsymbold:R2→R+\boldsymbold(\boldsymbolx,\boldsymboly)=\boldsymbolln(1+∣\boldsymbolx−\boldsymboly∣1+∣\boldsymbolx−\boldsymboly∣)\boldsymbolshown\boldsymbolthat\boldsymbold\boldsymbolis\boldsymbola\boldsymboldistance\boldsymbolonR2\boldsymbolplease\boldsymbolhelp★\boldsymbolespecially\boldsymbolon\boldsymboltriangular\boldsymbolinequality Answered by mindispower last updated on 24/Oct/20 d(x,y)⩾0,∀(x,y)∈R2d(x,y)+d(y,z)∣x−y∣1+∣x−y∣=f(∣x−y∣)f(x)=x1+xf(a)+f(b)⩾f(a+b),∀(a.b)∈R+2..?⇔a1+a+b1+b⩾a+ba+b+1..A⇔2ab+a+b(1+a)(1+b)⩾a+b(a+b+1)⇔2ab+a+ba+b+1+ab⩾a+ba+b+1aba+b+1+ab+ab+a+ba+b+ab+1⩾a+ba+b+1f(t)=tt+1,f′(t)=1(1+t)2⩾0fincreseab+a+b⩾a+b,ab⩾0,⇒f(ab+a+b)⩾f(a+b)⇔ab+a+bab+a+b+1+abab+a+b+1⩾ab+a+bab+a+b+1⩾a+ba+b+1⇒Aistrue∣x−y∣1+∣x−y∣+∣y−z∣1+∣y−z∣⩾∣x−y∣+∣y−z∣1+∣x−y∣+∣y−z∣⩾∣x−z∣1+∣x−z∣since∣x−y∣+∣y−z∣⩾∣x−z∣andfisincreasefunctionln(1+a)+ln(1+b)⩾ln(1+a+b)……thisshowinequality Answered by 1549442205PVT last updated on 24/Oct/20 a)Since1+∣x−y∣1+∣x−y∣⩾1∀(x,y)∈R2,d(x,y)=ln(1+∣x−y∣1+∣x−y∣)⩾0∀(x,y)∈R2Furthermore,itiscleard(x,y)=d(y,x)Hence,fortwoanypointsA(x)andB(y)wedefineρ(A,B)=d(x,y)thenρ(A,B)isthedistancebetweentwopointsAandBofR2(\boldsymbolq.\boldsymbole.\boldsymbold)b)SupposeA(x),B(y),C(z)arethreearbitrarypointswhicharen′tcolinearWewillprovethatd(x,y)+d(x,z)>d(y,z)⇔ln(1+∣x−y∣1+∣x−y∣)+ln(1+∣x−z∣1+∣x−z∣)>ln(2+∣y−z∣1+∣y−z∣)⇔(1+∣x−y∣1+∣x−y∣)(1+∣x−z∣1+∣x−z∣)>(1+∣y−z∣1+∣y−z∣)(1).Indeed,(1)⇔1+∣x−y∣1+∣x−y∣+∣x−z∣1+∣x−z∣+∣x−y∣∣x−z∣(1+∣x−y∣)(1+∣x−z∣)>1+∣y−z∣1+∣y−z∣⇔∣x−y∣1+∣x−y∣+∣x−z∣1+∣x−z∣∣x−y∣∣x−z∣(1+∣x−y∣)(1+∣x−z∣)>∣y−z∣1+∣y−z∣=11+1∣y−z∣∙Thecase∣y−z∣=min{∣∣x−y∣,∣x−z∣,∣y−z∣}⇒∣x−y∣1+∣x−y∣=11+1∣x−y∣⩾11+1∣y−z∣⇒L.H.S>R.H.S(\boldsymbolq.\boldsymbole.\boldsymbold)∙Thecase∣y−z∣=max{∣∣x−y∣,∣x−z∣,∣y−z∣}⇒∣x−y∣1+∣x−y∣+∣x−z∣1+∣x−z∣⩾∣x−y∣+∣x−z∣1+max{∣x−y∣,∣x−z∣}⩾∣y−z∣1+max{∣x−y∣,∣x−z∣}⩾∣y−z∣1+∣y−z∣⇒L.H.S>R.H.S(\boldsymbolq.\boldsymbole.\boldsymbold)Thus,ineverycaseswealwayshave⇒L.H.S>R.H.S.Therefore,thetrianglarinequalityisproved Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-the-roots-of-the-equation-24x-4-52x-3-18x-2-13x-6-0-are-and-1-Find-the-value-of-and-Next Next post: What-s-the-convergent-equation-of-this-series-x-1-2-x-2-2-x-3-2-x-n-2-Help- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.