Menu Close

let-d-be-an-application-d-R-2-R-d-x-y-ln-1-x-y-1-x-y-shown-that-d-is-a-distance-on-R-2-please-help-especially-on-triangular-inequality-




Question Number 119401 by cantor last updated on 24/Oct/20
let d be an application  d:R^2 →R_+   d(x,y)=ln(1+((∣x−y∣)/(1+∣x−y∣)))  shown that d is a distance  on R^2                            please help    ★especially on triangular  inequality
\boldsymbollet\boldsymbold\boldsymbolbe\boldsymbolan\boldsymbolapplication\boldsymbold:R2R+\boldsymbold(\boldsymbolx,\boldsymboly)=\boldsymbolln(1+\boldsymbolx\boldsymboly1+\boldsymbolx\boldsymboly)\boldsymbolshown\boldsymbolthat\boldsymbold\boldsymbolis\boldsymbola\boldsymboldistance\boldsymbolonR2\boldsymbolplease\boldsymbolhelp\boldsymbolespecially\boldsymbolon\boldsymboltriangular\boldsymbolinequality
Answered by mindispower last updated on 24/Oct/20
d(x,y)≥0,∀(x,y)∈R^2   d(x,y)+d(y,z)  ((∣x−y∣)/(1+∣x−y∣))=f(∣x−y∣)  f(x)=(x/(1+x))  f(a)+f(b)≥f(a+b),∀(a.b)∈R_+ ^2 ..?  ⇔(a/(1+a))+(b/(1+b))≥((a+b)/(a+b+1))..A  ⇔((2ab+a+b)/((1+a)(1+b)))≥((a+b)/((a+b+1)))  ⇔((2ab+a+b)/(a+b+1+ab))≥((a+b)/(a+b+1))  ((ab)/(a+b+1+ab))+((ab+a+b)/(a+b+ab+1))≥((a+b)/(a+b+1))  f(t)=(t/(t+1)),f′(t)=(1/((1+t)^2 ))≥0 f increse  ab+a+b≥a+b,  ab≥0,  ⇒f(ab+a+b)≥f(a+b)  ⇔((ab+a+b)/(ab+a+b+1))+((ab)/(ab+a+b+1))≥((ab+a+b)/(ab+a+b+1))≥((a+b)/(a+b+1))  ⇒A is true   ((∣x−y∣)/(1+∣x−y∣))+((∣y−z∣)/(1+∣y−z∣))≥((∣x−y∣+∣y−z∣)/(1+∣x−y∣+∣y−z∣))≥((∣x−z∣)/(1+∣x−z∣))  since ∣x−y∣+∣y−z∣≥∣x−z∣  and f is increase function  ln(1+a)+ln(1+b)≥ln(1+a+b)......  this show inequality
d(x,y)0,(x,y)R2d(x,y)+d(y,z)xy1+xy=f(xy)f(x)=x1+xf(a)+f(b)f(a+b),(a.b)R+2..?a1+a+b1+ba+ba+b+1..A2ab+a+b(1+a)(1+b)a+b(a+b+1)2ab+a+ba+b+1+aba+ba+b+1aba+b+1+ab+ab+a+ba+b+ab+1a+ba+b+1f(t)=tt+1,f(t)=1(1+t)20fincreseab+a+ba+b,ab0,f(ab+a+b)f(a+b)ab+a+bab+a+b+1+abab+a+b+1ab+a+bab+a+b+1a+ba+b+1Aistruexy1+xy+yz1+yzxy+yz1+xy+yzxz1+xzsincexy+yz∣⩾∣xzandfisincreasefunctionln(1+a)+ln(1+b)ln(1+a+b)thisshowinequality
Answered by 1549442205PVT last updated on 24/Oct/20
a)Since 1+((∣x−y∣)/(1+∣x−y∣))≥1∀(x,y)∈R^2 ,  d(x,y)=ln(1+((∣x−y∣)/(1+∣x−y∣)))≥0∀(x,y)∈R^2   Furthermore,it is clear d(x,y)=d(y,x)  Hence ,for two any  points A(x)  and B(y)we define ρ(A,B)=d(x,y)  then ρ(A,B) is the distance between  two  points A and B of R^2 (q.e.d)   b)Suppose A(x),B(y),C(z) are three  arbitrary points which aren′t colinear  We will prove that   d(x,y)+d(x,z)>d(y,z)⇔ln(1+((∣x−y∣)/(1+∣x−y∣)))  +ln(1+((∣x−z∣)/(1+∣x−z∣)))>ln(2+((∣y−z∣)/(1+∣y−z∣)))  ⇔(1+((∣x−y∣)/(1+∣x−y∣)))(1+((∣x−z∣)/(1+∣x−z∣)))>  (1+((∣y−z∣)/(1+∣y−z∣)))(1).Indeed,  (1)⇔1+((∣x−y∣)/(1+∣x−y∣))+((∣x−z∣)/(1+∣x−z∣))  +((∣x−y∣∣x−z∣)/((1+∣x−y∣)(1+∣x−z∣)))>1+((∣y−z∣)/(1+∣y−z∣))  ⇔((∣x−y∣)/(1+∣x−y∣))+((∣x−z∣)/(1+∣x−z∣))  ((∣x−y∣∣x−z∣)/((1+∣x−y∣)(1+∣x−z∣)))>((∣y−z∣)/(1+∣y−z∣))=(1/(1+(1/(∣y−z∣))))  •The case ∣y−z∣=min{∣∣x−y∣,∣x−z∣,∣y−z∣}  ⇒((∣x−y∣)/(1+∣x−y∣))=(1/(1+(1/(∣x−y∣))))≥(1/(1+(1/(∣y−z∣))))  ⇒L.H.S>R.H.S(q.e.d)  •The case ∣y−z∣=max{∣∣x−y∣,∣x−z∣,∣y−z∣}  ⇒((∣x−y∣)/(1+∣x−y∣))+((∣x−z∣)/(1+∣x−z∣))≥((∣x−y∣+∣x−z∣)/(1+max{∣x−y∣,∣x−z∣}))  ≥((∣y−z∣)/(1+max{∣x−y∣,∣x−z∣}))≥((∣y−z∣)/(1+∣y−z∣))  ⇒L.H.S>R.H.S(q.e.d)  Thus,in every cases we always have  ⇒L.H.S>R.H.S.Therefore,the  trianglar inequality is proved
a)Since1+xy1+xy1(x,y)R2,d(x,y)=ln(1+xy1+xy)0(x,y)R2Furthermore,itiscleard(x,y)=d(y,x)Hence,fortwoanypointsA(x)andB(y)wedefineρ(A,B)=d(x,y)thenρ(A,B)isthedistancebetweentwopointsAandBofR2(\boldsymbolq.\boldsymbole.\boldsymbold)b)SupposeA(x),B(y),C(z)arethreearbitrarypointswhicharentcolinearWewillprovethatd(x,y)+d(x,z)>d(y,z)ln(1+xy1+xy)+ln(1+xz1+xz)>ln(2+yz1+yz)(1+xy1+xy)(1+xz1+xz)>(1+yz1+yz)(1).Indeed,(1)1+xy1+xy+xz1+xz+xy∣∣xz(1+xy)(1+xz)>1+yz1+yzxy1+xy+xz1+xzxy∣∣xz(1+xy)(1+xz)>yz1+yz=11+1yzThecaseyz∣=min{∣∣xy,xz,yz}xy1+xy=11+1xy11+1yzL.H.S>R.H.S(\boldsymbolq.\boldsymbole.\boldsymbold)Thecaseyz∣=max{∣∣xy,xz,yz}xy1+xy+xz1+xzxy+xz1+max{xy,xz}yz1+max{xy,xz}yz1+yzL.H.S>R.H.S(\boldsymbolq.\boldsymbole.\boldsymbold)Thus,ineverycaseswealwayshaveL.H.S>R.H.S.Therefore,thetrianglarinequalityisproved

Leave a Reply

Your email address will not be published. Required fields are marked *