Menu Close

let-D-n-x-y-R-2-x-y-1-n-n-1-find-the-value-of-D-n-e-x-2-y-2-dxdy-2-calculate-0-e-x-2-dx-




Question Number 51994 by maxmathsup by imad last updated on 01/Jan/19
let D_n = {(x,y)∈R^2   /(x,y)∈[(1/n) ,n[ }  1) find the value of ∫∫_D_n       e^(−x^2 −y^2 ) dxdy  2) calculate ∫_0 ^(+∞)  e^(−x^2 ) dx .
letDn={(x,y)R2/(x,y)[1n,n[}1)findthevalueofDnex2y2dxdy2)calculate0+ex2dx.
Commented by Abdo msup. last updated on 03/Jan/19
changement x=r cosθ and y=r sinθ give  x^2  +y^2 =r^2  but  (1/n^2 )≤x^2 ≤n^2  and (1/n^2 )≤y^2 ≤n^2  ⇒  (2/n^2 )≤x^2  +y^2 ≤2n^2  ⇒(2/n^2 ) ≤r^2  ≤2n^2     ((√2)/n) ≤r≤(√2)n  also x≥0 and y≥0 ⇒0≤θ≤(π/2)  ∫∫_(D_n  )    e^(−x^2 −y^2 ) dxdy =∫∫_(((√2)/n)≤r<(√2)n  and 0≤θ≤(π/2))    e^(−r^2 ) rdr dθ  =(π/2) (−(1/2))[ e^(−r^2 ) ]_((√2)/n) ^((√2)n) =(π/4){ −e^(−2n^2 )   +e^(−(2/n^2 )) }  2) we have ∫∫_D_n    e^(−x^2 −y^2 ) dxdy  =∫_(1/n) ^n  e^(−x^2 ) dx.∫_(1/n) ^n  e^(−y^2 ) dy =(∫_(1/n) ^n   e^(−x^2 ) dx)^2  ⇒  lim_(n→+∞)  (∫_(1/n) ^n  e^(−x^2 ) dx)^2  =lim_(n→+∞)  D_n  =(π/4) ⇒  (∫_0 ^(+∞)  e^(−x^2 ) dx)^2 =(π/4) ⇒∫_0 ^∞   e^(−x^2 ) dx =((√π)/2) .
changementx=rcosθandy=rsinθgivex2+y2=r2but1n2x2n2and1n2y2n22n2x2+y22n22n2r22n22nr2nalsox0andy00θπ2Dnex2y2dxdy=2nr<2nand0θπ2er2rdrdθ=π2(12)[er2]2n2n=π4{e2n2+e2n2}2)wehaveDnex2y2dxdy=1nnex2dx.1nney2dy=(1nnex2dx)2limn+(1nnex2dx)2=limn+Dn=π4(0+ex2dx)2=π40ex2dx=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *