Menu Close

let-D-v-5-1-3-m-find-number-v-and-m-such-that-D-2-5I-I-identity-matrix-




Question Number 153227 by Eric002 last updated on 05/Sep/21
let D= [((v                 5)),(((1/3)             m)) ] find number (v) and  (m) such that D^2 =5I     (I=identity matrix)
$${let}\:{D}=\begin{bmatrix}{{v}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}}\\{\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:{m}}\end{bmatrix}\:{find}\:{number}\:\left({v}\right)\:{and} \\ $$$$\left({m}\right)\:{such}\:{that}\:{D}^{\mathrm{2}} =\mathrm{5}{I}\:\:\:\:\:\left({I}={identity}\:{matrix}\right) \\ $$
Answered by puissant last updated on 05/Sep/21
D^2 = [((v^2 +(5/3)          5v+5m)),(((v/3)+(m/3)          (5/3)+m^2 )) ]=  [((5       0)),((0       5)) ]  ⇒  { ((v^2 =5−(5/3))),((v+m=0)) :},  { ((v+m=0)),((m^2 =5−(5/3))) :}  ⇒ m=−v   v^2 =((10)/3) ⇒ v=(√((10)/3))  ;  m=−(√((10)/3))..  or v=−(√(((10)/3) )) ;  m=(√((10)/3))..
$${D}^{\mathrm{2}} =\begin{bmatrix}{{v}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\mathrm{5}{v}+\mathrm{5}{m}}\\{\frac{{v}}{\mathrm{3}}+\frac{{m}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{3}}+{m}^{\mathrm{2}} }\end{bmatrix}=\:\begin{bmatrix}{\mathrm{5}\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\mathrm{5}}\end{bmatrix} \\ $$$$\Rightarrow\:\begin{cases}{{v}^{\mathrm{2}} =\mathrm{5}−\frac{\mathrm{5}}{\mathrm{3}}}\\{{v}+{m}=\mathrm{0}}\end{cases},\:\begin{cases}{{v}+{m}=\mathrm{0}}\\{{m}^{\mathrm{2}} =\mathrm{5}−\frac{\mathrm{5}}{\mathrm{3}}}\end{cases} \\ $$$$\Rightarrow\:{m}=−{v}\: \\ $$$${v}^{\mathrm{2}} =\frac{\mathrm{10}}{\mathrm{3}}\:\Rightarrow\:{v}=\sqrt{\frac{\mathrm{10}}{\mathrm{3}}}\:\:;\:\:{m}=−\sqrt{\frac{\mathrm{10}}{\mathrm{3}}}.. \\ $$$${or}\:{v}=−\sqrt{\frac{\mathrm{10}}{\mathrm{3}}\:}\:;\:\:{m}=\sqrt{\frac{\mathrm{10}}{\mathrm{3}}}.. \\ $$
Commented by Eric002 last updated on 05/Sep/21
well done
$${well}\:{done} \\ $$$$ \\ $$
Answered by King1 last updated on 06/Sep/21
$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *