Menu Close

let-D-x-y-R-2-x-2-y-2-x-lt-0-and-x-2-y-2-y-gt-0-and-y-gt-0-calculate-D-x-y-2-dxdy-




Question Number 36193 by prof Abdo imad last updated on 30/May/18
let D ={(x,y)∈ R^2  / x^2  +y^2  −x<0 and  x^2  +y^2  −y >0 and y>0}  calculate∫∫_D   (x+y)^2 dxdy
$${let}\:{D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−{x}<\mathrm{0}\:{and}\right. \\ $$$$\left.{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:−{y}\:>\mathrm{0}\:{and}\:{y}>\mathrm{0}\right\} \\ $$$${calculate}\int\int_{{D}} \:\:\left({x}+{y}\right)^{\mathrm{2}} {dxdy} \\ $$
Commented by maxmathsup by imad last updated on 15/Aug/18
changement  x=r cosθ  and y =r sinθ  give  x^2  +y^2 −x <0 ⇒r^2  −rcosθ <0 ⇒r<cosθ  x^2  +y^2 −y>0 ⇒r^2 −r sinθ >0 ⇒sinθ<r ⇒ sinθ<r<cosθ  ∫∫_D (x+y)^2 dxdy = ∫∫_D (x^2 +y^2  +2xy)dxdy  = ∫_0 ^(2π)  (∫_(sinθ) ^(cosθ)  (r^2  +2r^2 cosθ sinθ)rdr)dθ  =∫_0 ^(2π)  ( ∫_(sinθ) ^(cosθ) r^3 dr  +∫_(sinθ) ^(cosθ)  2r^3 sinθ coθ dr)dθ  =(1/4)∫_0 ^(2π)  (cos^4 θ−sin^4 θ)dθ   +(1/2) ∫_0 ^(2π) sinθ cosθ(cos^4 θ −sin^4 θ)dθ  =(1/4) ∫_0 ^(2π)  cos(2θ)dθ  + (1/4) ∫_0 ^(2π) sinθ cosθ(cos^2 θ −sin^2 θ)dθ  =0 +(1/4) ∫_0 ^(2π) sinθ cos^3 θdθ −(1/4) ∫_0 ^(2π)  cosθ sin^3 θ  =−(1/(16)) [cos^4 θ]_0 ^(2π)   −(1/(16))[sin^4 θ]_0 ^(2π)  =0 ⇒ I =0
$${changement}\:\:{x}={r}\:{cos}\theta\:\:{and}\:{y}\:={r}\:{sin}\theta\:\:{give} \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −{x}\:<\mathrm{0}\:\Rightarrow{r}^{\mathrm{2}} \:−{rcos}\theta\:<\mathrm{0}\:\Rightarrow{r}<{cos}\theta \\ $$$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −{y}>\mathrm{0}\:\Rightarrow{r}^{\mathrm{2}} −{r}\:{sin}\theta\:>\mathrm{0}\:\Rightarrow{sin}\theta<{r}\:\Rightarrow\:{sin}\theta<{r}<{cos}\theta \\ $$$$\int\int_{{D}} \left({x}+{y}\right)^{\mathrm{2}} {dxdy}\:=\:\int\int_{{D}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:+\mathrm{2}{xy}\right){dxdy} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\left(\int_{{sin}\theta} ^{{cos}\theta} \:\left({r}^{\mathrm{2}} \:+\mathrm{2}{r}^{\mathrm{2}} {cos}\theta\:{sin}\theta\right){rdr}\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\left(\:\int_{{sin}\theta} ^{{cos}\theta} {r}^{\mathrm{3}} {dr}\:\:+\int_{{sin}\theta} ^{{cos}\theta} \:\mathrm{2}{r}^{\mathrm{3}} {sin}\theta\:{co}\theta\:{dr}\right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\left({cos}^{\mathrm{4}} \theta−{sin}^{\mathrm{4}} \theta\right){d}\theta\:\:\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}\theta\:{cos}\theta\left({cos}^{\mathrm{4}} \theta\:−{sin}^{\mathrm{4}} \theta\right){d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{cos}\left(\mathrm{2}\theta\right){d}\theta\:\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}\theta\:{cos}\theta\left({cos}^{\mathrm{2}} \theta\:−{sin}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\mathrm{0}\:+\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}\theta\:{cos}^{\mathrm{3}} \theta{d}\theta\:−\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{cos}\theta\:{sin}^{\mathrm{3}} \theta \\ $$$$=−\frac{\mathrm{1}}{\mathrm{16}}\:\left[{cos}^{\mathrm{4}} \theta\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:−\frac{\mathrm{1}}{\mathrm{16}}\left[{sin}^{\mathrm{4}} \theta\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:=\mathrm{0}\:\Rightarrow\:{I}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *