Menu Close

let-D-x-y-R-2-x-2-y-2-x-lt-0-and-x-2-y-2-y-gt-0-and-y-gt-0-calculate-D-x-y-2-dxdy-




Question Number 36193 by prof Abdo imad last updated on 30/May/18
let D ={(x,y)∈ R^2  / x^2  +y^2  −x<0 and  x^2  +y^2  −y >0 and y>0}  calculate∫∫_D   (x+y)^2 dxdy
letD={(x,y)R2/x2+y2x<0andx2+y2y>0andy>0}calculateD(x+y)2dxdy
Commented by maxmathsup by imad last updated on 15/Aug/18
changement  x=r cosθ  and y =r sinθ  give  x^2  +y^2 −x <0 ⇒r^2  −rcosθ <0 ⇒r<cosθ  x^2  +y^2 −y>0 ⇒r^2 −r sinθ >0 ⇒sinθ<r ⇒ sinθ<r<cosθ  ∫∫_D (x+y)^2 dxdy = ∫∫_D (x^2 +y^2  +2xy)dxdy  = ∫_0 ^(2π)  (∫_(sinθ) ^(cosθ)  (r^2  +2r^2 cosθ sinθ)rdr)dθ  =∫_0 ^(2π)  ( ∫_(sinθ) ^(cosθ) r^3 dr  +∫_(sinθ) ^(cosθ)  2r^3 sinθ coθ dr)dθ  =(1/4)∫_0 ^(2π)  (cos^4 θ−sin^4 θ)dθ   +(1/2) ∫_0 ^(2π) sinθ cosθ(cos^4 θ −sin^4 θ)dθ  =(1/4) ∫_0 ^(2π)  cos(2θ)dθ  + (1/4) ∫_0 ^(2π) sinθ cosθ(cos^2 θ −sin^2 θ)dθ  =0 +(1/4) ∫_0 ^(2π) sinθ cos^3 θdθ −(1/4) ∫_0 ^(2π)  cosθ sin^3 θ  =−(1/(16)) [cos^4 θ]_0 ^(2π)   −(1/(16))[sin^4 θ]_0 ^(2π)  =0 ⇒ I =0
changementx=rcosθandy=rsinθgivex2+y2x<0r2rcosθ<0r<cosθx2+y2y>0r2rsinθ>0sinθ<rsinθ<r<cosθD(x+y)2dxdy=D(x2+y2+2xy)dxdy=02π(sinθcosθ(r2+2r2cosθsinθ)rdr)dθ=02π(sinθcosθr3dr+sinθcosθ2r3sinθcoθdr)dθ=1402π(cos4θsin4θ)dθ+1202πsinθcosθ(cos4θsin4θ)dθ=1402πcos(2θ)dθ+1402πsinθcosθ(cos2θsin2θ)dθ=0+1402πsinθcos3θdθ1402πcosθsin3θ=116[cos4θ]02π116[sin4θ]02π=0I=0

Leave a Reply

Your email address will not be published. Required fields are marked *