Menu Close

let-D-x-y-R-2-x-gt-0-y-gt-0-x-y-lt-1-1-calculate-D-xy-x-2-y-2-dxdy-2-let-a-gt-0-b-gt-0-calculate-D-a-x-b-y-dxdy-




Question Number 36191 by prof Abdo imad last updated on 30/May/18
let D = {(x,y)∈R^2  /x>0 ,y>0,x+y<1}  1) calculate ∫∫_D   ((xy)/(x^2  +y^2 ))dxdy  2) let a>0 ,b>0 calculate ∫∫_D  a^x b^y dxdy
letD={(x,y)R2/x>0,y>0,x+y<1}1)calculateDxyx2+y2dxdy2)leta>0,b>0calculateDaxbydxdy
Commented by maxmathsup by imad last updated on 26/Aug/18
polar coordinates changement x =rcosθ  and y =rsinθ    x>0 and y>0 ⇒ 0<θ<(π/2)  and x+y <1 ⇒ r(cosθ +sinθ)<1 ⇒  0<r<(1/(cosθ +sinθ))  ∫∫_D ((xy)/(x^2  +y^2 ))dxdy  = ∫_0 ^(π/2)   (∫_0 ^(1/(cosθ+sinθ)) ((r^2 cosθsinθ)/r^2 ) rdr)dθ  =∫_0 ^(π/2)   ( ∫_0 ^(1/(cosθ +sinθ)) rdr)cosθ sinθ dθ   but  ∫_0 ^(1/(cosθ +sinθ))  rdr =[(r^2 /2)]_0 ^(1/(cosθ +sinθ))  =(1/(2(cosθ +sinθ)^2 )) =(1/(2(1+2sinθ cosθ))) ⇒  I  = ∫_0 ^(π/2)     ((cosθ sinθ)/(2(1+2sinθ cosθ)))dθ =(1/4) ∫_0 ^(π/2)  ((sin(2θ))/(1+sin(2θ)))dθ  =_(2θ =t)     (1/4) ∫_0 ^π     ((sint)/(1+sint)) (dt/2) =(1/8) ∫_0 ^π   ((1+sint −1)/(1+sint))dt  =(π/8)  −(1/8) ∫_0 ^π     (dt/(1+sint))  chang. tan((t/2)) =u give  ∫_0 ^π     (dt/(1+sint))  = ∫_0 ^∞      (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =2 ∫_0 ^∞    (du/(1+u^2  +2u))  =2 ∫_0 ^∞      (du/((u+1)^2 )) =2[−(1/(u+1))]_0 ^(+∞)  = 2  ⇒ I =(π/8) −(1/4) .
polarcoordinateschangementx=rcosθandy=rsinθx>0andy>00<θ<π2andx+y<1r(cosθ+sinθ)<10<r<1cosθ+sinθDxyx2+y2dxdy=0π2(01cosθ+sinθr2cosθsinθr2rdr)dθ=0π2(01cosθ+sinθrdr)cosθsinθdθbut01cosθ+sinθrdr=[r22]01cosθ+sinθ=12(cosθ+sinθ)2=12(1+2sinθcosθ)I=0π2cosθsinθ2(1+2sinθcosθ)dθ=140π2sin(2θ)1+sin(2θ)dθ=2θ=t140πsint1+sintdt2=180π1+sint11+sintdt=π8180πdt1+sintchang.tan(t2)=ugive0πdt1+sint=011+2u1+u22du1+u2=20du1+u2+2u=20du(u+1)2=2[1u+1]0+=2I=π814.

Leave a Reply

Your email address will not be published. Required fields are marked *