Question Number 112266 by Aina Samuel Temidayo last updated on 07/Sep/20
$$\mathrm{Let}\:\Omega\:\mathrm{denote}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{ABC}. \\ $$$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\Omega\:\mathrm{at}\:\mathrm{A}\:\mathrm{meets}\:\mathrm{BC}\:\mathrm{at}\:\mathrm{X}. \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{bisectors}\:\mathrm{of}\:\angle\mathrm{AXB}\:\mathrm{meet} \\ $$$$\mathrm{AC}\:\mathrm{and}\:\mathrm{AB}\:\mathrm{at}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F} \\ $$$$\mathrm{respectively}.\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{bisector}\:\mathrm{from}\:\angle\mathrm{BAC}\:\mathrm{on}\:\mathrm{BC}.\:\mathrm{Let}\:\mathrm{AD} \\ $$$$\mathrm{intersect}\:\mathrm{EF}\:\mathrm{at}\:\mathrm{K}\:\mathrm{and}\:\Omega\:\mathrm{again}\:\mathrm{at} \\ $$$$\mathrm{L}\left(\mathrm{other}\:\mathrm{than}\:\mathrm{A}\right).\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{AEDF}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{rhombus}\:\mathrm{and}\:\mathrm{further}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{triangle}\:\mathrm{KLX}\:\mathrm{passes} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment} \\ $$$$\mathrm{BC}. \\ $$
Answered by 1549442205PVT last updated on 07/Sep/20
Commented by 1549442205PVT last updated on 07/Sep/20