Menu Close

let-f-0-1-contnue-integrable-u-n-1-n-0-1-x-n-f-x-dx-prove-that-u-n-cnverge-and-find-its-sum-




Question Number 48065 by maxmathsup by imad last updated on 18/Nov/18
let f    :  ]0,1[  contnue integrable  u_n =(−1)^n  ∫_0 ^1  x^n f(x)dx  prove that Σ u_n  cnverge and find its sum
$$\left.{let}\:{f}\:\:\:\::\:\:\right]\mathrm{0},\mathrm{1}\left[\:\:{contnue}\:{integrable}\:\:{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {f}\left({x}\right){dx}\right. \\ $$$${prove}\:{that}\:\Sigma\:{u}_{{n}} \:{cnverge}\:{and}\:{find}\:{its}\:{sum} \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 23/Nov/18
we have Σ_(n=0) ^∞ u_n =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1 x^n f(x)dx  =∫_0 ^1 (Σ_(n=0) ^∞ (−x)^n f(x))dx (due to uniform convergence on [0,1]  =∫_0 ^1   ((f(x))/(1+x)) dx so Σ u_n  converges and its sum is ∫_0 ^1   ((f(x))/(1+x))dx.
$${we}\:{have}\:\sum_{{n}=\mathrm{0}} ^{\infty} {u}_{{n}} =\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {f}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{x}\right)^{{n}} {f}\left({x}\right)\right){dx}\:\left({due}\:{to}\:{uniform}\:{convergence}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\right. \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{f}\left({x}\right)}{\mathrm{1}+{x}}\:{dx}\:{so}\:\Sigma\:{u}_{{n}} \:{converges}\:{and}\:{its}\:{sum}\:{is}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{f}\left({x}\right)}{\mathrm{1}+{x}}{dx}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *