Menu Close

let-f-0-1-contnue-integrable-u-n-1-n-0-1-x-n-f-x-dx-prove-that-u-n-cnverge-and-find-its-sum-




Question Number 48065 by maxmathsup by imad last updated on 18/Nov/18
let f    :  ]0,1[  contnue integrable  u_n =(−1)^n  ∫_0 ^1  x^n f(x)dx  prove that Σ u_n  cnverge and find its sum
letf:]0,1[contnueintegrableun=(1)n01xnf(x)dxprovethatΣuncnvergeandfinditssum
Commented by maxmathsup by imad last updated on 23/Nov/18
we have Σ_(n=0) ^∞ u_n =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1 x^n f(x)dx  =∫_0 ^1 (Σ_(n=0) ^∞ (−x)^n f(x))dx (due to uniform convergence on [0,1]  =∫_0 ^1   ((f(x))/(1+x)) dx so Σ u_n  converges and its sum is ∫_0 ^1   ((f(x))/(1+x))dx.
wehaven=0un=n=0(1)n01xnf(x)dx=01(n=0(x)nf(x))dx(duetouniformconvergenceon[0,1]=01f(x)1+xdxsoΣunconvergesanditssumis01f(x)1+xdx.

Leave a Reply

Your email address will not be published. Required fields are marked *