Menu Close

let-f-0-1-ln-1-e-i-x-dx-find-a-simple-form-of-f-




Question Number 36736 by abdo mathsup 649 cc last updated on 04/Jun/18
let  f(θ) = ∫_0 ^1  ln(1−e^(iθ) x)dx  find a simple form of f(θ)
letf(θ)=01ln(1eiθx)dxfindasimpleformoff(θ)
Commented by prof Abdo imad last updated on 06/Jun/18
for that let find ϕ(z) =∫_0 ^1 ln(1−zx)dx if  ∣z∣=1 we have ∣zx∣≤1  and  ln^′ (1−u)=((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒  ln(1−u)=−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (u^n /n) ⇒  ϕ(z) =−∫_0 ^1  {Σ_(n=1) ^∞  ((z^n x^n )/n)}dx  =−Σ_(n=1) ^∞  (z^n /n) ∫_0 ^1  x^n  dx  =−Σ_(n=1) ^∞   (z^n /(n(n+1))) =−Σ_(n=1) ^∞ ( (1/n) −(1/(n+1)))z^n   =−Σ_(n=1) ^∞  (z^n /n) +Σ_(n=1) ^∞    (z^n /(n+1))  but  −Σ_(n=1) ^∞  (z^n /n) =ln(1−z) and  Σ_(n=1) ^∞   (z^n /(n+1)) = Σ_(n=2) ^∞   (z^(n−1) /n) =(1/z) Σ_(n=2) ^∞  (z^n /n)  = (1/z){ Σ_(n=1) ^∞  (z^n /n) −z}  =(1/z){−ln(1−z) −z}  =−((ln(1−z))/z) −1 ⇒  ϕ(z)= ln(1−z) −((ln(1−z))/z) −1  f(θ) =ϕ(e^(iθ) ) = (1−(1/e^(iθ) ))ln(1−e^(iθ) ) −1  =(1−e^(−iθ) ) ln(1−e^(iθ) ) −1 .
forthatletfindφ(z)=01ln(1zx)dxifz∣=1wehavezx∣⩽1andln(1u)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnφ(z)=01{n=1znxnn}dx=n=1znn01xndx=n=1znn(n+1)=n=1(1n1n+1)zn=n=1znn+n=1znn+1butn=1znn=ln(1z)andn=1znn+1=n=2zn1n=1zn=2znn=1z{n=1znnz}=1z{ln(1z)z}=ln(1z)z1φ(z)=ln(1z)ln(1z)z1f(θ)=φ(eiθ)=(11eiθ)ln(1eiθ)1=(1eiθ)ln(1eiθ)1.

Leave a Reply

Your email address will not be published. Required fields are marked *