Menu Close

let-f-0-1-ln-1-i-x-1-x-2-dx-1-determine-a-explicit-form-of-f-2-calculate-0-1-ln-1-ix-1-x-2-dx-and-0-1-ln-1-2ix-1-x-2-dx-




Question Number 52459 by Abdo msup. last updated on 08/Jan/19
let f(α)=∫_0 ^1  ((ln(1+iαx))/(1+x^2 ))dx  1)determine a explicit form of f(α)  2) calculate ∫_0 ^1  ((ln(1+ix))/(1+x^2 ))dx and ∫_0 ^1  ((ln(1+2ix))/(1+x^2 ))dx.
letf(α)=01ln(1+iαx)1+x2dx1)determineaexplicitformoff(α)2)calculate01ln(1+ix)1+x2dxand01ln(1+2ix)1+x2dx.
Commented by maxmathsup by imad last updated on 08/Jan/19
1) we have f^′ (α) =∫_0 ^1   ((ix)/((1+iαx)(1+x^2 )))dx  so for α≠0   f^′ (α)=(1/α) ∫_0 ^1   ((1+iαx−1)/((1+iαx)(x^2  +1)))dx =(1/α) −(1/α) ∫_0 ^1  (dx/((iαx+1)(x^2  +1)))dx let  decompose F(x)=(1/((iαx+1)(x^2  +1))) ⇒  F(x)=(a/(iαx+1)) +((bx+c)/(x^2  +1))  a=lim_(x→((−1)/(iα)))    (iαx+1)F(x) = (1/((((1/(iα )))^2  +1))) =(1/((1/(−α^2 ))+1)) =−(1/(1−α^2 )) α^2  =(α^2 /(α^2 −1))  lim_(x→+∞ )   xF(x)=0 =(a/(iα)) +b ⇒b=−(a/(iα)) =((ia)/α) ⇒  F(x)=(α^2 /(α^2 −1)) (1/(iαx+1)) +((((ia)/α)x+c)/(x^2  +1))  (we suppose α≠+^− 1)  F(o)=1 =(α^2 /(α^2 −1)) +c ⇒c=1−(α^2 /(α^2 −1)) =((−1)/(α^2 −1)) ⇒  F(x) =(α^2 /((α^2 −1)(1+iαx))) +(((i/α)(α^2 /(α^2 −1))x−(1/(α^2 −1)))/(x^2  +1))  =(α^2 /((α^2 −1)(1+iαx)))  +(1/(α^2 −1)) ((iαx−1)/(x^2  +1)) ⇒  f^′ (α)=(1/α) −(1/α) ∫_0 ^1   (α^2 /((α^2 −1)(1+iαx))) dx−(1/(α(α^2 −1))) ∫_0 ^1   ((iαx −1)/(x^2  +1))dx  =(1/α) −(α/(α^2 −1))(1/(iα)) ∫_0 ^1    ((iαdx)/(1+iαx)) dx −(i/(2(α^2 −1)))[ln(x^2  +1)]_0 ^1   +(π/(4α(α^2 −1)))  =(1/α) +(i/(α^2 −1))ln(1+iα) −((iln(2))/(2(α^2 −1))) +(π/(4α(α^2 −1))) ⇒  f(α) =ln∣α∣ +i ∫  ((ln(1+iα))/(α^2 −1))dα +i((ln(2))/2) ∫ (dα/(α^2 −1)) +(π/4) ∫   (dα/(α(α^2 −1))) +c but  ∫   (dα/(α^2 −1)) =(1/2) ∫ ((1/(α−1)) −(1/(α+1)))dα =(1/2)ln∣((α−1)/(α+1))∣ let decompose  w(α)=(1/(α(α^2 −1))) =(1/(α(α−1)(α+1)))  w(α)=(a/α) +(b/(α−1)) +(c/(α+1)) ⇒a =−1  b=(1/2)  and  c=(1/2) ⇒w(α)=−(1/α) +(1/(2(α−1))) +(1/(2(α+1))) ⇒  ∫ (dα/(α(α^2 −1))) =−ln∣α∣ +(1/2)ln∣α^2 −1∣ ⇒  f(α)=i ∫  ((ln(1+iα))/(α^2 −1))dα +((iln(2))/4)ln∣((α−1)/(α+1))∣+ (1−(π/4))ln∣α∣+(π/8)ln∣α^2 −1∣ +c
1)wehavef(α)=01ix(1+iαx)(1+x2)dxsoforα0f(α)=1α011+iαx1(1+iαx)(x2+1)dx=1α1α01dx(iαx+1)(x2+1)dxletdecomposeF(x)=1(iαx+1)(x2+1)F(x)=aiαx+1+bx+cx2+1a=limx1iα(iαx+1)F(x)=1((1iα)2+1)=11α2+1=11α2α2=α2α21limx+xF(x)=0=aiα+bb=aiα=iaαF(x)=α2α211iαx+1+iaαx+cx2+1(wesupposeα+1)F(o)=1=α2α21+cc=1α2α21=1α21F(x)=α2(α21)(1+iαx)+iαα2α21x1α21x2+1=α2(α21)(1+iαx)+1α21iαx1x2+1f(α)=1α1α01α2(α21)(1+iαx)dx1α(α21)01iαx1x2+1dx=1ααα211iα01iαdx1+iαxdxi2(α21)[ln(x2+1)]01+π4α(α21)=1α+iα21ln(1+iα)iln(2)2(α21)+π4α(α21)f(α)=lnα+iln(1+iα)α21dα+iln(2)2dαα21+π4dαα(α21)+cbutdαα21=12(1α11α+1)dα=12lnα1α+1letdecomposew(α)=1α(α21)=1α(α1)(α+1)w(α)=aα+bα1+cα+1a=1b=12andc=12w(α)=1α+12(α1)+12(α+1)dαα(α21)=lnα+12lnα21f(α)=iln(1+iα)α21dα+iln(2)4lnα1α+1+(1π4)lnα+π8lnα21+c
Commented by Abdo msup. last updated on 08/Jan/19
2) we have 1+ix=(√(1+x^2 ))((1/( (√(1+x^2 )))) +i(x/( (√(1+x^2 )))))=r e^(iθ)  ⇒  r=(√(1+x^2 )) and θ=arctanx ⇒  ln(1+ix)=(1/2)ln(1+x^2 )+iarctanx ⇒  ∫_0 ^1   ((ln(1+ix))/(1+x^2 )) =(1/2) ∫_0 ^1   ((ln(1+x^2 ))/(1+x^2 )) dx +i∫_0 ^1   ((arctanx)/(1+x^2 ))dx  by parts I=∫_0 ^1   ((arctanx)/(1+x^2 ))dx=[arctan^2 x]_0 ^1   −∫_0 ^1  ((arctanx)/(1+x^2 )) =(π^2 /(16)) −I ⇒2I=(π^2 /(16)) ⇒I=(π^2 /(32))  let find ∫_0 ^1 ((ln(1+x^2 ))/(1+x^2 ))  dx let   f(t)=∫_0 ^1   ((ln(1+tx^2 ))/(1+x^2 )) dx with t>0 we have  f^′ (t) = ∫_0 ^1    (x^2 /((1+tx^2 )(1+x^2 )))dx  =_((√t)x=u)      ∫_0 ^(√t)       (u^2 /(t(1+u^2 )(1+(u^2 /t)))) (du/( (√t)))  =(1/( (√t))) ∫_0 ^(√t)      (u^2 /((u^2 +1)(u^2  +t))) du  let decompose  F(u) =(u^2 /((u^2  +1)(u^2  +t))) ⇒  F(u)=((au +b)/(u^2  +1)) +((cu+d)/(u^2  +t))  F(−u)=F(u) ⇒((−au+b)/(u^2  +1)) +((−cu +d)/(u^2  +t))  =F(u) ⇒a=0 and c=0 ⇒  F(u)=(b/(u^2  +1)) +(d/(u^2  +t))  we see that   F(u)=(1/(t−1))((1/(u^2  +1))−(1/(u^2  +t)))  ⇒  ∫_0 ^(√t)  F(u)du =(1/(t−1)) ∫_0 ^(√t)   (du/(u^2  +1)) −(1/(t−1)) ∫_0 ^(√t)   (du/(u^2  +t))  but ∫_0 ^(√t)   (du/(1+u^2 )) =arctan((√t))  ∫_0 ^(√t)   (du/(u^2  +t)) =_(u=(√t)α)     ∫_0 ^1    (((√t)dα)/(t(1+α^2 ))) =(1/( (√t)))(π/4) ⇒  f^′ (t)=(1/( (√t))){((arctan((√t)))/(t−1)) −(π/(4(√t)(t−1)))} ⇒  f(t) =∫   ((arctan((√t)))/( (√t)(t−1)))dy −(π/4) ∫  (dt/(t(t−1))) +C  ∫   (dt/(t(t−1))) =∫ ((1/(t−1)) −(1/t))dt=ln∣((t−1)/t)∣ +c_1   ∫  ((arctan((√t)))/( (√t)(t−1)))dt =_((√t)=u)    ∫    ((arctan(u))/(u(u^2 −1))) (2u)du  =2 ∫  ((arctan(u))/(u^2 −1)) du ....be continued...
2)wehave1+ix=1+x2(11+x2+ix1+x2)=reiθr=1+x2andθ=arctanxln(1+ix)=12ln(1+x2)+iarctanx01ln(1+ix)1+x2=1201ln(1+x2)1+x2dx+i01arctanx1+x2dxbypartsI=01arctanx1+x2dx=[arctan2x]0101arctanx1+x2=π216I2I=π216I=π232letfind01ln(1+x2)1+x2dxletf(t)=01ln(1+tx2)1+x2dxwitht>0wehavef(t)=01x2(1+tx2)(1+x2)dx=tx=u0tu2t(1+u2)(1+u2t)dut=1t0tu2(u2+1)(u2+t)duletdecomposeF(u)=u2(u2+1)(u2+t)F(u)=au+bu2+1+cu+du2+tF(u)=F(u)au+bu2+1+cu+du2+t=F(u)a=0andc=0F(u)=bu2+1+du2+tweseethatF(u)=1t1(1u2+11u2+t)0tF(u)du=1t10tduu2+11t10tduu2+tbut0tdu1+u2=arctan(t)0tduu2+t=u=tα01tdαt(1+α2)=1tπ4f(t)=1t{arctan(t)t1π4t(t1)}f(t)=arctan(t)t(t1)dyπ4dtt(t1)+Cdtt(t1)=(1t11t)dt=lnt1t+c1arctan(t)t(t1)dt=t=uarctan(u)u(u21)(2u)du=2arctan(u)u21du.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *