Menu Close

Let-f-0-1-R-be-a-differentiable-function-such-that-f-f-x-x-for-all-x-0-1-and-f-0-1-If-n-is-a-positive-integer-evaluate-the-following-integral-0-1-x-f-x-2n




Question Number 145318 by ZiYangLee last updated on 04/Jul/21
Let f:[0,1]→R be a differentiable function  such that f(f(x))=x for all x∈[0,1] and  f(0)=1.  If n is a positive integer, evaluate the  following integral:                            ∫_0 ^( 1) (x−f(x))^(2n)  dx
Letf:[0,1]Rbeadifferentiablefunctionsuchthatf(f(x))=xforallx[0,1]andf(0)=1.Ifnisapositiveinteger,evaluatethefollowingintegral:01(xf(x))2ndx
Answered by mindispower last updated on 04/Jul/21
fdifferntiabl⇒f continus  f(0)=1,f(f(0))=0⇒f(1)=0  ⇒[0,1]⊂f[0,1]  f∣[0,1]→[0,1] is bijective   ∫_0 ^1 (x−f(x))^(2n) dx,x=f(t)  ∫_1 ^0 (f(t)−t)^(2n) f′(t)dt  =−∫_0 ^1 ((f(t)−t))^(2n) f′(t)dt  2∫_0 ^1 (x−f(x))^(2n) dx=∫_0 ^1 (x−f(x))^(2n) dx−∫_0 ^1 (x−f(x))^(2n) f′(x)dx  =∫_0 ^1 (x−f(x))^(2n) (1−f′(x))dx  =[(1/(2n+1))(x−f(x))^(2n+1) ]_0 ^1 =(1/(2n+1))((1−f(1))^(2n+1) +f(0)^(2n+2) )  =(2/(2n+1))⇒∫_0 ^1 (x−f(x))^(2n) dx=(1/(2n+1))  exemple of such function  x→1−x  ∫_0 ^1 (x−f(x))^(2n) dx=∫_0 ^1 (2x−1)^(2n) =(1/(2(2n+1)))[2x−1]_0 ^1 =(1/(2n+1))
fdifferntiablfcontinusf(0)=1,f(f(0))=0f(1)=0[0,1]f[0,1]f[0,1][0,1]isbijective01(xf(x))2ndx,x=f(t)10(f(t)t)2nf(t)dt=01((f(t)t))2nf(t)dt201(xf(x))2ndx=01(xf(x))2ndx01(xf(x))2nf(x)dx=01(xf(x))2n(1f(x))dx=[12n+1(xf(x))2n+1]01=12n+1((1f(1))2n+1+f(0)2n+2)=22n+101(xf(x))2ndx=12n+1exempleofsuchfunctionx1x01(xf(x))2ndx=01(2x1)2n=12(2n+1)[2x1]01=12n+1

Leave a Reply

Your email address will not be published. Required fields are marked *