Menu Close

Let-f-0-1-R-is-a-continuous-function-prove-that-lim-n-0-1-n-f-x-1-n-2-x-2-dx-pi-2-f-0-proof-S-n-




Question Number 165271 by mnjuly1970 last updated on 28/Jan/22
       Let ,   f : [ 0 , 1 ] → R  is a continuous       function , prove that :             lim_( n→ ∞)  ∫_0 ^( 1) (( n f(x))/(1+ n^2  x^( 2) )) dx = (π/2) f (0 )       −−− proof −−−           S_( n)  = [∫_(0 ) ^( (1/( (√n))))  (( n. f(x))/(1 + n^( 2) x^( 2) )) dx =Ω_( n) ]+[ ∫_(1/( (√n))) ^( 1)  ((n.f (x))/(1 + n^( 2) x^( 2) )) dx = Φ_( n)  ]        Ω_( n)  =_(∃ t_( n) ∈ ( 0 , (1/( (√n) )) )) ^(MeanValueTheorem( first))   f (t_( n)  )∫_(0 ) ^( (1/( (√n))))  (( n)/(1 + n^( 2) x^( 2) ))dx               =  f ( t_( n) ) ( tan^( −1) ( (√n) ))           lim_( n→∞)  (Ω_( n)  )  = (π/2) f (lim_( n→∞) ( t_( n) ) ) = (π/2) f (0 )           Φ_( n) = ∫_(1/( (√n))) ^( 1) (( n. f(x) )/(1 + n^( 2) x^( 2) )) dx  ⇒_(∃ M >0) ^(f  is bounded)  ∣ Φ_( n)  ∣ ≤ M.∫_(1/( (√n))) ^( 1) (n/(1+ n^( 2) x^( 2) )) dx           ⇒  ∣ Φ_( n) ∣ ≤ M . ( tan^( −1) ( n )− tan^( −1) ( (√n) ))           lim_( n→ ∞)  ∣ Φ_( n) ∣ = 0  ⇒ lim_( n→∞)  Φ_( n)  =0            ∴    lim_( n→ ∞)  (  S_( n)  ) = (π/2) f (0 )    ■ m.n
Let,f:[0,1]Risacontinuousfunction,provethat:limn01nf(x)1+n2x2dx=π2f(0)proofSn=[01nn.f(x)1+n2x2dx=Ωn]+[1n1n.f(x)1+n2x2dx=Φn]Ωn=MeanValueTheorem(first)tn(0,1n)f(tn)01nn1+n2x2dx=f(tn)(tan1(n))limn(Ωn)=π2f(limn(tn))=π2f(0)Φn=1n1n.f(x)1+n2x2dxfisboundedM>0ΦnM.1n1n1+n2x2dxΦnM.(tan1(n)tan1(n))limnΦn=0limnΦn=0limn(Sn)=π2f(0)◼m.n
Answered by mindispower last updated on 28/Jan/22
nice Result Thanx sir
niceResultThanxsir
Commented by mnjuly1970 last updated on 28/Jan/22
    thank you so much sir...
thankyousomuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *