Menu Close

Let-f-0-x-1-1-x-and-f-n-x-f-0-f-n-1-x-n-1-2-3-Evaluate-f-2018-2018-




Question Number 111149 by Aina Samuel Temidayo last updated on 02/Sep/20
Let f_0 (x) = (1/(1−x)) and f_n (x)  =f_0 (f_(n−1) (x)), n=1,2,3,... Evaluate  f_(2018) (2018)
Letf0(x)=11xandfn(x)=f0(fn1(x)),n=1,2,3,Evaluatef2018(2018)
Commented by kaivan.ahmadi last updated on 02/Sep/20
f_1 (x)=f_0 (f_0 (x))=f_0 ((1/(1−x)))=(1/(1−(1/(1−x))))=(1/((1−x−1)/(1−x)))=((1−x)/(−x))=1−(1/x)  f_2 (x)=(1/(1−1+(1/x)))=x  f_3 (x)=(1/(1−x))=f_0 (x)  ⇒f_n (x)=f_i ;i=0 or 1 or 2 and n≡^3 i  2018≡^3 2⇒f_(2018) (x)=f_2 (x)=x  ⇒f_(2018) (2018)=2018
f1(x)=f0(f0(x))=f0(11x)=1111x=11x11x=1xx=11xf2(x)=111+1x=xf3(x)=11x=f0(x)fn(x)=fi;i=0or1or2andn3i201832f2018(x)=f2(x)=xf2018(2018)=2018
Commented by Aina Samuel Temidayo last updated on 03/Sep/20
Please I don′t understand these lines.   I will be glad if you can help shed more  light on it.  ⇒f_n (x)=f_i , i=0 or 1 or 2 and n≡^3 i  2018≡^3 2⇒f_(2018) (x)=f_2 (x)=x
PleaseIdontunderstandtheselines.Iwillbegladifyoucanhelpshedmorelightonit.fn(x)=fi,i=0or1or2andn3i201832f2018(x)=f2(x)=x
Commented by kaivan.ahmadi last updated on 03/Sep/20
f_0 (x)=(1/(1−x))  f_1 (x)=1−(1/x)  f_2 (x)=x  ⇒f_3 (x)=f_0 (x)     f_5 (x)=f_1 (x)     f_6 (x)=f_2 (x)  so f_n (x) is a one of the f_0 ,f_1 ,f_2   f_n (x)= { ((f_0 (x)      ; n=3k)),((f_1 (x)       ; n=3k+1            (k∈Z))),((f_2 (x)       ; n=3k+2)) :}  now since 2018=3(672)+2  we have  f_(2018 ) (x)=f_2 (x)=x
f0(x)=11xf1(x)=11xf2(x)=xf3(x)=f0(x)f5(x)=f1(x)f6(x)=f2(x)sofn(x)isaoneofthef0,f1,f2fn(x)={f0(x);n=3kf1(x);n=3k+1(kZ)f2(x);n=3k+2nowsince2018=3(672)+2wehavef2018(x)=f2(x)=x
Commented by Aina Samuel Temidayo last updated on 03/Sep/20
I understand now. Thanks.
Iunderstandnow.Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *