Menu Close

let-f-0-x-4-x-6-6-dx-with-gt-0-1-calculate-f-2-calculate-also-g-0-x-4-x-6-6-2-dx-3-find-the-values-of-0-x-4-x-6-1-dx-0-




Question Number 62856 by mathmax by abdo last updated on 26/Jun/19
let f(λ) =∫_0 ^(+∞)    (x^4 /(x^6  +λ^6 )) dx   with λ>0  1) calculate  f(λ)  2) calculate also g(λ) =∫_0 ^∞   (x^4 /((x^6  +λ^6 )^2 ))dx  3) find the values of ∫_0 ^∞    (x^4 /(x^6  +1)) dx , ∫_0 ^∞    (x^4 /(x^6  +8))dx and ∫_0 ^∞    (x^4 /((x^6 +8)^2 ))dx.
letf(λ)=0+x4x6+λ6dxwithλ>01)calculatef(λ)2)calculatealsog(λ)=0x4(x6+λ6)2dx3)findthevaluesof0x4x6+1dx,0x4x6+8dxand0x4(x6+8)2dx.
Commented by mathmax by abdo last updated on 26/Jun/19
1) we use the result  ∫_0 ^∞   (t^(a−1) /(1+t))dt =(π/(sin(πa))) if  0<a<1  (result proved)  changementx =λ t give f(λ)= ∫_0 ^∞     (((λt)^4 )/((λt)^6  +λ^6 ))λdt =(λ^5 /λ^6 )∫_0 ^∞   (t^4 /(1+t^6 )) dt  =(1/λ) ∫_0 ^∞   ((t^4  dt)/(1+t^6 ))  =_(t =u^(1/6) )    (1/λ) ∫_0 ^∞   (((u^(1/6) )^4 )/(1+u)) (1/6) u^((1/6)−1)  du  =(1/(6λ)) ∫_0 ^∞    (u^((2/3)+(1/6)−1) /(1+u)) du =(1/(6λ)) ∫_0 ^∞   (u^((5/6)−1) /(1+u)) du =(1/(6λ)) (π/(sin(((5π)/6)))) =(π/(6λ sin(π−(π/6))))  =(π/(6λsin((π/6)))) =(π/(6λ (1/2))) =(π/(3λ)) ⇒ ★ f(λ)=(π/(3λ)) ★  2) let derivate f(λ)  we have f^′ (λ) =−∫_0 ^∞  ((6λ^5  x^4 )/((x^6  +λ^6 )^2 )) dx  =−6λ^5  ∫_0 ^∞  (x^4 /((x^6  +λ^6 )^2 ))dx =−6 λ^5  g(λ) ⇒g(λ) =−(1/(6λ^5 )) f^′ (λ)  we have f^′ (λ) =−(π/3)(1/λ^2 ) ⇒g(λ) =−(1/(6λ^5 )) (−(π/(3λ^2 ))) =(π/(18 λ^7 )) ⇒  ★ g(λ) =(π/(18λ^7 )) ★
1)weusetheresult0ta11+tdt=πsin(πa)if0<a<1(resultproved)changementx=λtgivef(λ)=0(λt)4(λt)6+λ6λdt=λ5λ60t41+t6dt=1λ0t4dt1+t6=t=u161λ0(u16)41+u16u161du=16λ0u23+1611+udu=16λ0u5611+udu=16λπsin(5π6)=π6λsin(ππ6)=π6λsin(π6)=π6λ12=π3λf(λ)=π3λ2)letderivatef(λ)wehavef(λ)=06λ5x4(x6+λ6)2dx=6λ50x4(x6+λ6)2dx=6λ5g(λ)g(λ)=16λ5f(λ)wehavef(λ)=π31λ2g(λ)=16λ5(π3λ2)=π18λ7g(λ)=π18λ7
Commented by mathmax by abdo last updated on 26/Jun/19
3) ∫_0 ^∞   (x^4 /(1+x^6 )) dx =f(1) =(π/3)  let calculate   ∫_0 ^∞    (x^4 /(x^6  +8)) dx  here  λ^6  =8 ⇒ λ =8^(1/6)  =(2^3 )^(1/6)  =2^(1/2)  =2 ⇒  ∫_0 ^∞   (x^4 /(x^6  +8))dx =f((√2)) =(π/(3(√2)))  ∫_0 ^∞    (x^4 /((x^6  +8)^2 )) dx =g((√2)) =(π/(18((√2))^7 )) =(π/(18 .2^(7/2) )) =(π/(18.3.(√2))) =(π/(54(√2))) .
3)0x41+x6dx=f(1)=π3letcalculate0x4x6+8dxhereλ6=8λ=816=(23)16=212=20x4x6+8dx=f(2)=π320x4(x6+8)2dx=g(2)=π18(2)7=π18.272=π18.3.2=π542.
Commented by mathmax by abdo last updated on 26/Jun/19
error of typo  2^(1/2)  =(√2)
erroroftypo212=2

Leave a Reply

Your email address will not be published. Required fields are marked *