let-f-0-x-4-x-6-6-dx-with-gt-0-1-calculate-f-2-calculate-also-g-0-x-4-x-6-6-2-dx-3-find-the-values-of-0-x-4-x-6-1-dx-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62856 by mathmax by abdo last updated on 26/Jun/19 letf(λ)=∫0+∞x4x6+λ6dxwithλ>01)calculatef(λ)2)calculatealsog(λ)=∫0∞x4(x6+λ6)2dx3)findthevaluesof∫0∞x4x6+1dx,∫0∞x4x6+8dxand∫0∞x4(x6+8)2dx. Commented by mathmax by abdo last updated on 26/Jun/19 1)weusetheresult∫0∞ta−11+tdt=πsin(πa)if0<a<1(resultproved)changementx=λtgivef(λ)=∫0∞(λt)4(λt)6+λ6λdt=λ5λ6∫0∞t41+t6dt=1λ∫0∞t4dt1+t6=t=u161λ∫0∞(u16)41+u16u16−1du=16λ∫0∞u23+16−11+udu=16λ∫0∞u56−11+udu=16λπsin(5π6)=π6λsin(π−π6)=π6λsin(π6)=π6λ12=π3λ⇒★f(λ)=π3λ★2)letderivatef(λ)wehavef′(λ)=−∫0∞6λ5x4(x6+λ6)2dx=−6λ5∫0∞x4(x6+λ6)2dx=−6λ5g(λ)⇒g(λ)=−16λ5f′(λ)wehavef′(λ)=−π31λ2⇒g(λ)=−16λ5(−π3λ2)=π18λ7⇒★g(λ)=π18λ7★ Commented by mathmax by abdo last updated on 26/Jun/19 3)∫0∞x41+x6dx=f(1)=π3letcalculate∫0∞x4x6+8dxhereλ6=8⇒λ=816=(23)16=212=2⇒∫0∞x4x6+8dx=f(2)=π32∫0∞x4(x6+8)2dx=g(2)=π18(2)7=π18.272=π18.3.2=π542. Commented by mathmax by abdo last updated on 26/Jun/19 erroroftypo212=2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-x-4-1-x-6-2-dx-2-calculate-0-1-x-8-1-x-6-2-dx-3-calculate-0-x-8-1-x-6-2-dx-Next Next post: dy-dx-x-y-ln-x-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.