Menu Close

Let-f-1-2-be-the-function-defined-by-f-x-x-1-x-If-g-2-1-is-a-function-such-that-g-f-x-x-for-all-x-1-Show-that-g-t-t-t-2-4-2-




Question Number 117934 by Ar Brandon last updated on 14/Oct/20
Let f : [1,∞)→[2,∞) be the function defined by                                      f(x)=x+(1/x)  If g : [2,∞)→[1,∞), is a function such that (g○f)(x)=x  for all x≥1. Show that g(t)=((t+(√(t^2 −4)))/2)
Letf:[1,)[2,)bethefunctiondefinedbyf(x)=x+1xIfg:[2,)[1,),isafunctionsuchthat(gf)(x)=xforallx1.Showthatg(t)=t+t242
Answered by Lordose last updated on 14/Oct/20
g(f(x))=x  g(x+(1/x)) = x  x+(1/x)= y  x^2 −yx + 1=0  x^2 −yx +(−(y/2))^2 = −1 + (y^2 /4)  (x−(y/2))=±(√((y^2 −4)/4))  x= (1/2)(y±(√(y^2 −4)))  g(y)= (1/2)(y±(√(y^2 −4)))  g(t) = (1/2)(t±(√(t^2 −4)))
g(f(x))=xg(x+1x)=xx+1x=yx2yx+1=0x2yx+(y2)2=1+y24(xy2)=±y244x=12(y±y24)g(y)=12(y±y24)g(t)=12(t±t24)
Commented by Ar Brandon last updated on 14/Oct/20
Thank You ��

Leave a Reply

Your email address will not be published. Required fields are marked *