Menu Close

let-F-1-2-sin-x-1-x-2-dx-1-calculate-dF-d-2-calculate-lim-0-F-




Question Number 55615 by Abdo msup. last updated on 28/Feb/19
let F(α)=∫_α ^(1+α^2 )   ((sin(αx))/(1+αx^2 ))dx  1) calculate (dF/dα)(α)  2)  calculate lim_(α→0)   F(α)
letF(α)=α1+α2sin(αx)1+αx2dx1)calculatedFdα(α)2)calculatelimα0F(α)
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Feb/19
(dF/dα)=∫_α ^(1+α^2 ) (∂/∂α)(((sinαx)/(1+αx^2 )))dx +((sinα(1+α^2 ))/(1+α(1+α)^2 ))(d/dα)(1+α^2 )−((sinα(α))/(1+α(α)^2 ))×(d/dα)(α)  =∫_α ^(1+α^2 ) (((1+αx^2 )×cosαx×x−sinαx(0+x^2 ))/((1+αx^2 )^2 ))dx+((sin(α+α^3 ))/(1+α+2α^2 +α^3 ))×(2α)−((sinα^2 )/(1+α^3 ))×1  =∫_α ^(1+α^2 ) ((xcosαx+αx^3 cosαx^2  −x^2 sinαx)/((1+αx^2 )^2 ))dx+((2αsin(α+α^3 ))/(1+α+2α^2 +α^3 ))−((sinα^2 )/(1+α^3 ))  wait...
dFdα=α1+α2α(sinαx1+αx2)dx+sinα(1+α2)1+α(1+α)2ddα(1+α2)sinα(α)1+α(α)2×ddα(α)=α1+α2(1+αx2)×cosαx×xsinαx(0+x2)(1+αx2)2dx+sin(α+α3)1+α+2α2+α3×(2α)sinα21+α3×1=α1+α2xcosαx+αx3cosαx2x2sinαx(1+αx2)2dx+2αsin(α+α3)1+α+2α2+α3sinα21+α3wait

Leave a Reply

Your email address will not be published. Required fields are marked *