Question Number 125814 by Tanuidesire last updated on 14/Dec/20
$${Let}\:{f}:\left[\mathrm{1},\mathrm{5}\right]\rightarrow\mathbb{R}\:{be}\:{defined}\:{by}\:{f}\left({x}\right)=\frac{\mathrm{6}}{{x}+\mathrm{1}}.\:{Show}\:{that}\:{f}\:{has}\:{a}\:{unique}\:{fixed}\:{point}\:{and}\:{find}\:{it}. \\ $$
Answered by Olaf last updated on 14/Dec/20
$${f}\:\mathrm{strictly}\:\mathrm{decreases}\:\mathrm{and}\:: \\ $$$${f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{6}}{\mathrm{1}+\mathrm{1}}\:=\:\mathrm{3} \\ $$$${f}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{6}}{\mathrm{5}+\mathrm{1}}\:=\:\mathrm{1} \\ $$$${f}\left(\left[\mathrm{1},\mathrm{5}\right]\right)\:=\:\left[\mathrm{1},\mathrm{3}\right]\:\subseteq\:\left[\mathrm{1},\mathrm{5}\right] \\ $$$$\mathrm{and}\:: \\ $$$${f}\left({x}\right)\:=\:{x}\:\Leftrightarrow\:{x}^{\mathrm{2}} +{x}−\mathrm{6}\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:{x}\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}\left(\mathrm{1}\right)\left(−\mathrm{6}\right)}}{\mathrm{2}}\:=\:−\mathrm{3}\:\mathrm{or}\:\mathrm{2} \\ $$$$\mathrm{Only}\:{x}\:=\:\mathrm{2}\:\mathrm{is}\:\mathrm{included}\:\mathrm{in}\:\left[\mathrm{1},\mathrm{5}\right]. \\ $$$$\Rightarrow\:\mathcal{S}\:=\:\left\{\:\mathrm{2}\:\right\}. \\ $$