Menu Close

let-f-a-0-1-dt-x-a-3-1-calculate-f-a-2-find-also-0-1-dt-x-a-x-a-3-2-3-find-the-values-of-integrals-0-1-dt-x-1-3-and-0-1-dt-x-1-




Question Number 53477 by maxmathsup by imad last updated on 22/Jan/19
let f(a)=∫_0 ^1    (dt/( (√(x+a)) +3))  1) calculate f(a)  2) find also ∫_0 ^1    (dt/( (√(x+a))((√(x+a)) +3)^2 ))  3) find the values of integrals ∫_0 ^1    (dt/( (√(x+1))+3))  and ∫_0 ^1   (dt/( (√(x+1))((√(x+1))+3)^2 ))
letf(a)=01dtx+a+31)calculatef(a)2)findalso01dtx+a(x+a+3)23)findthevaluesofintegrals01dtx+1+3and01dtx+1(x+1+3)2
Commented by Abdo msup. last updated on 23/Jan/19
1) we have f(a) =[2((√(x+a))+3)]_0 ^1   =2((√(a+1))−(√a))  2)we have f^′ (a) =∫_0 ^1   (∂/∂a)(  (1/( (√(x+a))+3)))dx  =∫_0 ^1   −((((√(x+a))+3)^, )/(((√(x+a))+3)^2 ))dx =−∫_0 ^1    (1/(2((√(x+a)))((√(x+a))+3)^2 ))dx  ⇒∫_0 ^1     (dx/(((√(x+a)))((√(x+a))+3)^2 )) =−2f^′ (a)  =−4((√(a+1))−(√a))^′  =−4((1/(2(√(a+1)))) −(1/(2(√a))))  =2((1/( (√a))) −(1/( (√(a+1)))))=2(((√(a+1))−(√a))/( (√(a^2  +a))))  3) we have ∫_0 ^1   (dt/( (√(x+1))+3)) =f(1)=2((√2)−1)  ∫_0 ^1     (dx/(((√(x+1)))((√(x+1))+3)^2 )) =−2f^′ (1)=2(((√2)−1)/( (√2)))  =(√2)((√2)−1)=2−(√2).
1)wehavef(a)=[2(x+a+3)]01=2(a+1a)2)wehavef(a)=01a(1x+a+3)dx=01(x+a+3),(x+a+3)2dx=0112(x+a)(x+a+3)2dx01dx(x+a)(x+a+3)2=2f(a)=4(a+1a)=4(12a+112a)=2(1a1a+1)=2a+1aa2+a3)wehave01dtx+1+3=f(1)=2(21)01dx(x+1)(x+1+3)2=2f(1)=2212=2(21)=22.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
1)(1/( (√(x+a)) +3))×∣t∣_0 ^1 =(1/( (√(x+a)) +3))  sir i think dt is mistyped... it should be dx...
1)1x+a+3×t01=1x+a+3sirithinkdtismistypeditshouldbedx

Leave a Reply

Your email address will not be published. Required fields are marked *