Question Number 36755 by prof Abdo imad last updated on 05/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18

Commented by abdo.msup.com last updated on 05/Jun/18

Commented by abdo.msup.com last updated on 05/Jun/18

Commented by abdo.msup.com last updated on 05/Jun/18
![3) ∫_0 ^1 e^t ln(1+e^(−3t) )dt = ∫_0 ^1 e^t { Σ_(n=1) ^∞ (((−1)^(n−1) )/n) e^(−3nt) )}dt =Σ_(n=1) ^∞ (((−1)^(n−1) )/n) ∫_0 ^1 e^((1−3n)t) dt =Σ_(n=1) ^∞ (((−1)^(n−1) )/n) (1/(1−3n))[ e^((1−3n)t) ]_0 ^1 =Σ_(n=1) ^∞ (((−1)^(n−1) e^(1−3n) )/(n(1−3n))) −Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(1−3n))) let A_n = Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(1−3n))) (A_n /3) = Σ_(n=1) ^∞ (((−1)^n )/(3n(3n−1))) =Σ_(n=1) ^∞ (−1)^n {(1/(3n−1)) −(1/(3n))} =Σ_(n=1) ^(∞ ) (((−1)^n )/(3n−1)) −(1/3) Σ_(n=1) ^∞ (((−1)^n )/n) =((ln(2))/3) +Σ_(n=1) ^∞ (((−1)^n )/(3n−1)) let f(x)=Σ_(n=1) ^∞ (−1)^n (x^(3n−1) /(3n−1)) f^′ (x) = Σ_(n=1) ^∞ (−1)^n x^(3n−2) = (1/x^2 ) Σ_(n=1) ^∞ (−x^3 )^n = (1/x^2 ) (1/(1+x^3 )) ⇒ f(x)= ∫ (dx/(x^2 (1+x^3 ))) +c ....be continued...](https://www.tinkutara.com/question/Q36798.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
