Menu Close

let-f-a-0-1-e-t-ln-1-e-at-dt-with-a-0-1-find-f-a-2-calculate-f-a-3-find-the-value-of-0-1-e-t-ln-1-e-3t-dt-




Question Number 36755 by prof Abdo imad last updated on 05/Jun/18
let f(a) = ∫_0 ^1   e^t ln(1+ e^(−at) )dt  with a≥0  1) find f(a)  2) calculate f^′ (a)  3) find the value of  ∫_0 ^1  e^t ln(1+e^(−3t) )dt .
letf(a)=01etln(1+eat)dtwitha01)findf(a)2)calculatef(a)3)findthevalueof01etln(1+e3t)dt.
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
Commented by abdo.msup.com last updated on 05/Jun/18
for ∣x∣<1 ln^′ (1+x) =(1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n   and ln(1+x)=Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^(n+1)   =Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n  ⇒  f(a)= ∫_0 ^1  e^t  {Σ_(n=1) ^∞  (((−1)^(n−1) )/n)  e^(−nat) }dt  = Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ∫_0 ^1    e^((1−na)t) dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(1/(1−na)){ e^(1−na)  −1}  =Σ_(n=1) ^∞   (((−1)^(n−1)  e^(1−na) )/(n(1−na)))  −Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(1−na)))  let w(a) =Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(1−na)))  ((w(a))/a) =Σ_(n=1) ^∞    (((−1)^n )/(na(na−1)))  =Σ_(n=1) ^∞   (−1)^n ( (1/(na−1)) −(1/(na)))  =Σ_(n=1) ^∞   (((−1))/(na−1)) −(1/a) Σ_(n=1) ^∞  (((−1)^n )/n)  Σ_(n=1) ^∞    (((−1)^n )/(na−1))  +((ln(2))/a) =....be continued...
forx∣<1ln(1+x)=11+x=n=0(1)nxnandln(1+x)=n=0(1)nn+1xn+1=n=1(1)n1nxnf(a)=01et{n=1(1)n1nenat}dt=n=1(1)n1n01e(1na)tdt=n=1(1)n1n11na{e1na1}=n=1(1)n1e1nan(1na)n=1(1)n1n(1na)letw(a)=n=1(1)n1n(1na)w(a)a=n=1(1)nna(na1)=n=1(1)n(1na11na)=n=1(1)na11an=1(1)nnn=1(1)nna1+ln(2)a=.becontinued
Commented by abdo.msup.com last updated on 05/Jun/18
2) we have f^′ (a) = ∫_0 ^1  ((−te^(−at)  e^t )/(1+e^(−at) ))dt  =−∫_0 ^1    (( t e^((1−a)t) )/(1+e^(−at) )) dt   =−∫_0 ^1   t e^((1−a)t)  {Σ_(n=1) ^∞  (((−1)^(n−1) )/n) e^(−nat) }dt  =Σ_(n=1) ^∞   (((−1)^n )/n) ∫_0 ^1  t e^((1−a−na)t) dt =....
2)wehavef(a)=01teatet1+eatdt=01te(1a)t1+eatdt=01te(1a)t{n=1(1)n1nenat}dt=n=1(1)nn01te(1ana)tdt=.
Commented by abdo.msup.com last updated on 05/Jun/18
3) ∫_0 ^1  e^t  ln(1+e^(−3t) )dt  = ∫_0 ^1  e^t  { Σ_(n=1) ^∞ (((−1)^(n−1) )/n)  e^(−3nt) )}dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^1   e^((1−3n)t) dt  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) (1/(1−3n))[ e^((1−3n)t) ]_0 ^1   =Σ_(n=1) ^∞   (((−1)^(n−1)  e^(1−3n) )/(n(1−3n)))  −Σ_(n=1) ^∞    (((−1)^(n−1) )/(n(1−3n))) let  A_n = Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(1−3n)))  (A_n /3) = Σ_(n=1) ^∞    (((−1)^n )/(3n(3n−1)))  =Σ_(n=1) ^∞  (−1)^n {(1/(3n−1)) −(1/(3n))}  =Σ_(n=1) ^(∞ )   (((−1)^n )/(3n−1)) −(1/3) Σ_(n=1) ^∞  (((−1)^n )/n)  =((ln(2))/3) +Σ_(n=1) ^∞   (((−1)^n )/(3n−1))  let f(x)=Σ_(n=1) ^∞   (−1)^n  (x^(3n−1) /(3n−1))  f^′ (x) = Σ_(n=1) ^∞  (−1)^n  x^(3n−2)   = (1/x^2 ) Σ_(n=1) ^∞  (−x^3 )^n = (1/x^2 ) (1/(1+x^3 )) ⇒  f(x)= ∫     (dx/(x^2 (1+x^3 ))) +c ....be continued...
3)01etln(1+e3t)dt=01et{n=1(1)n1ne3nt)}dt=n=1(1)n1n01e(13n)tdt=n=1(1)n1n113n[e(13n)t]01=n=1(1)n1e13nn(13n)n=1(1)n1n(13n)letAn=n=1(1)n1n(13n)An3=n=1(1)n3n(3n1)=n=1(1)n{13n113n}=n=1(1)n3n113n=1(1)nn=ln(2)3+n=1(1)n3n1letf(x)=n=1(1)nx3n13n1f(x)=n=1(1)nx3n2=1x2n=1(x3)n=1x211+x3f(x)=dxx2(1+x3)+c.becontinued
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
2)f(α)=∫_0 ^1 e^t {ln(1+e^(αt) )−lne^(αt) )}dt  =∫_0 ^1 e^t {ln(1+e^(αt) )−αt}dt  f′(α)=∫_0 ^1 (∂/∂α) e^t {ln(1+e^(αt) )−αt}dt  =∫_0 ^1 e^t {((e^(αt) ×t)/(1+e^(αt) ))−t}dt  =∫_0 ^1 e^t {((te^(αt) −t−te^(αt) )/(1+e^(αt) ))}dt  =∫_0 ^1 ((−te^t )/(1+e^(αt) ))dt...contd
2)f(α)=01et{ln(1+eαt)lneαt)}dt=01et{ln(1+eαt)αt}dtf(α)=01αet{ln(1+eαt)αt}dt=01et{eαt×t1+eαtt}dt=01et{teαttteαt1+eαt}dt=01tet1+eαtdtcontd

Leave a Reply

Your email address will not be published. Required fields are marked *