Menu Close

let-f-a-0-1-ln-1-x-a-1-x-dx-with-a-gt-0-1-explicite-f-a-2-find-g-a-0-1-1-x-1-x-a-1-x-dx-3-find-the-value-of-0-1-ln-1-x-2-1-x-dx-and-0-1-ln-




Question Number 92407 by mathmax by abdo last updated on 06/May/20
let f(a) =∫_0 ^1 ln((√(1+x))+a(√(1−x)))dx   with  a>0  1)explicite f(a)  2)find g(a) =∫_0 ^1  ((√(1−x))/( (√(1+x))+a(√(1−x)))) dx  3) find the value of  ∫_0 ^1 ln((√(1+x))+2(√(1−x)))dx  and ∫_0 ^1 ln((√(1+x))+(1/3)(√(1−x)))dx  4) calculate A(θ) =∫_0 ^1 ln((√(1+x))+sinθ (√(1−x)))dx   0<θ<(π/2)
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+{a}\sqrt{\mathrm{1}−{x}}\right){dx}\:\:\:{with}\:\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){explicite}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{\mathrm{1}−{x}}}{\:\sqrt{\mathrm{1}+{x}}+{a}\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\mathrm{2}\sqrt{\mathrm{1}−{x}}\right){dx} \\ $$$${and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\mathrm{1}−{x}}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+{sin}\theta\:\sqrt{\mathrm{1}−{x}}\right){dx}\: \\ $$$$\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *