let-f-a-0-1-ln-2-x-1-ax-2-dx-with-a-lt-1-1-find-a-explicit-form-of-f-a-2-determine-A-0-1-ln-2-x-1-cos-x-2-dx-with-0-lt-lt-pi-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60595 by maxmathsup by imad last updated on 22/May/19 letf(a)=∫01ln2(x)(1−ax)2dxwith∣a∣<11)findaexplicitformoff(a)2)determineA(θ)=∫01ln2(x)(1−(cosθ)x)2dxwith0<θ<π2 Commented by maxmathsup by imad last updated on 23/May/19 1)wehavefor∣x∣<1∑n=0∞xn=11−xand∑n=1∞nxn−1=1(1−x)2⇒1(1−ax)2=∑n=1∞n(ax)n−1=∑n=1∞nan−1xn−1⇒f(a)=∫01(∑n=1∞nan−1xn−1)ln2(x)dx=∑n=1∞nan−1∫01xn−1ln2(x)dx=∑n=1∞nan−1wnwithwn=∫01xn−1ln2(x)dxbypartsu′=xn−1andv=ln2xwn=[1nxnln2x]01−∫011nxn2lnxxdx=−2n∫01xn−1ln(x)=byparts−2n{[1nxnlnx]01−∫011nxndxx}=−2n{−1n∫01xn−1dx}=2n3⇒f(a)=∑n=1∞2nan−1n3=2∑n=1∞an−1n2⇒af(a)=2∑n=1∞ann2lettrytofinds(x)=∑n=1∞xnn2if∣x∣<1…. Commented by maxmathsup by imad last updated on 23/May/19 wehaveS′(x)=∑n=1∞xn−1n⇒xS(1)(x)=∑n=1∞xnn⇒(xS(1)(x))′=∑n=1∞xn−1=∑n=0∞xn=11−x⇒S(1)(x)+xS(2)(x)=11−x⇒Sissolutionof(de)xy″+y′=11−xlety′=z⇒xz′+z=11−x(e)(he)⇒xz′+z=0⇒xz′=−z⇒z′z=−1x⇒ln∣z∣=−ln∣x∣+c⇒z=k∣x∣letdeterminethesolutionon]0,+∞[⇒z=kx⇒mvcmethodgivez′=k′x−kx2(e)⇒k′−kx+kx=11−x⇒k′=11−x⇒k(x)=−ln(1−x)+c0⇒z(x)=−ln(1−x)x+c0xy′=z⇒y′=−ln(1−x)x+c0x⇒y(x)=−∫0xln(1−t)tdt+c0ln(x)+λ⇒S(x)=c0ln(x)−∫0xln(1−t)tdt(x>0)S(e)=c0−∫0eln(1−t)tdt=∑n=1∞enn2⇒c0=∑n=1∞enn2+∫0eln(1−t)tdt⇒S(x)=(∑n=1∞enn2+∫0eln(1−t)tdt)ln(x)−∫0xln(1−t)tdt….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2-a-4-b-8-c-328-find-a-b-and-c-when-a-b-c-is-natual-number-Next Next post: Question-126130 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.