Menu Close

let-f-a-0-1-sin-2x-1-ax-2-dx-with-a-lt-1-1-approximate-f-a-by-a-polynom-2-find-the-value-perhaps-not-exact-of-0-1-sin-2x-1-2x-2-dx-3-let-g-a-0-1-x-2-s




Question Number 61328 by maxmathsup by imad last updated on 01/Jun/19
let f(a) =∫_0 ^1    ((sin(2x))/(1+ax^2 )) dx  with  ∣a∣<1  1) approximate f(a) by a polynom  2) find the value  (perhaps not exact) of ∫_0 ^1   ((sin(2x))/(1+2x^2 )) dx  3) let g(a) = ∫_0 ^1   ((x^2 sin(2x))/((1+ax^2 )^2 )) dx   approximat g(a) by a polynom  4) find the value of  ∫_0 ^1   ((x^2 sin(2x))/((1+2x^2 )^2 )) dx .
letf(a)=01sin(2x)1+ax2dxwitha∣<11)approximatef(a)byapolynom2)findthevalue(perhapsnotexact)of01sin(2x)1+2x2dx3)letg(a)=01x2sin(2x)(1+ax2)2dxapproximatg(a)byapolynom4)findthevalueof01x2sin(2x)(1+2x2)2dx.
Commented by maxmathsup by imad last updated on 02/Jun/19
1) the Q is approximate f(a) by a function.
1)theQisapproximatef(a)byafunction.
Commented by maxmathsup by imad last updated on 02/Jun/19
1)  we have    x−(x^3 /6) ≤ sinx ≤ x ⇒2x−((8x^3 )/6) ≤ sin(2x) ≤2x ⇒  2x−(4/3)x^3  ≤ sin(2x)≤2x ⇒((2x−(4/3)x^3 )/(1+ax^2 )) ≤((sin(2x))/(1+ax^2 )) ≤ ((2x)/(1+ax^2 )) ⇒  ∫_0 ^1   ((2xdx)/(1+ax^2 )) −(4/3) ∫_0 ^1   (x^3 /(1+ax^2 ))dx ≤ ∫_0 ^1    ((sin(2x))/(1+ax^2 )) dx ≤ ∫_0 ^1   ((2x)/(1+ax^2 )) dx  ∫_0 ^1   ((2xdx)/(ax^2  +1)) =(1/a) ∫_0 ^1  ((2ax dx)/(ax^2  +1)) =(1/a)[ln(ax^2  +1)]_0 ^1 =((ln(1+a))/a)   ( we suppose a≠0 )  ∫_0 ^1   (x^3 /(ax^2  +1)) dx =(1/a) ∫_0 ^1  (((ax^2 +1)x−x)/(ax^2  +1)) dx  =(1/a)∫_0 ^1  dx−(1/a) ∫_0 ^1  ((xdx)/(ax^2  +1))  =(1/a) −(1/(2a^2 )) ∫_0 ^1   ((2ax )/(ax^2  +1)) dx =(1/a) −(1/(2a^2 ))[ln(ax^2  +1)]_0 ^1  =(1/a) −((ln(a+1))/(2a^2 )) ⇒  ((ln(1+a))/a) −(4/(3a)) +((2ln(a+1))/(3a^2 )) ≤ f(a) ≤ ((ln(1+a))/a) ⇒  so we can take  v_0 =((ln(1+a))/(2a)) −(2/(3a)) +((ln(1+a))/(3a^2 )) +((ln(1+a))/(2a))  =((ln(1+a))/a) −(2/(3a)) +((ln(1+a))/(3a^2 )) ⇒f(a) ∼ ((ln(1+a))/a) −(2/(3a)) +((ln(1+a))/(3a^2 ))  with error δ = (1/2){ (4/(3a))−((2ln(a+1))/(3a^2 ))}
1)wehavexx36sinxx2x8x36sin(2x)2x2x43x3sin(2x)2x2x43x31+ax2sin(2x)1+ax22x1+ax2012xdx1+ax24301x31+ax2dx01sin(2x)1+ax2dx012x1+ax2dx012xdxax2+1=1a012axdxax2+1=1a[ln(ax2+1)]01=ln(1+a)a(wesupposea0)01x3ax2+1dx=1a01(ax2+1)xxax2+1dx=1a01dx1a01xdxax2+1=1a12a2012axax2+1dx=1a12a2[ln(ax2+1)]01=1aln(a+1)2a2ln(1+a)a43a+2ln(a+1)3a2f(a)ln(1+a)asowecantakev0=ln(1+a)2a23a+ln(1+a)3a2+ln(1+a)2a=ln(1+a)a23a+ln(1+a)3a2f(a)ln(1+a)a23a+ln(1+a)3a2witherrorδ=12{43a2ln(a+1)3a2}
Commented by maxmathsup by imad last updated on 02/Jun/19
2)  ∫_0 ^1   ((sin(2x))/(1+2x^2 )) dx =f(2)   and f(2)  ∼ ((ln(3))/2) −(1/3) +((ln(3))/(12))  =((6ln(3)−4 +ln(3))/(12)) =((7ln(3)−4)/(12)) ⇒ ∫_0 ^1   ((sin(2x))/(1+2x^2 )) dx ∼(7/(12))ln(3)−(1/3)
2)01sin(2x)1+2x2dx=f(2)andf(2)ln(3)213+ln(3)12=6ln(3)4+ln(3)12=7ln(3)41201sin(2x)1+2x2dx712ln(3)13
Commented by maxmathsup by imad last updated on 02/Jun/19
∫_0 ^1   ((sin(2x))/(1+2x^2 ))dx ∼0,3
01sin(2x)1+2x2dx0,3

Leave a Reply

Your email address will not be published. Required fields are marked *