Question Number 61328 by maxmathsup by imad last updated on 01/Jun/19

Commented by maxmathsup by imad last updated on 02/Jun/19

Commented by maxmathsup by imad last updated on 02/Jun/19
![1) we have x−(x^3 /6) ≤ sinx ≤ x ⇒2x−((8x^3 )/6) ≤ sin(2x) ≤2x ⇒ 2x−(4/3)x^3 ≤ sin(2x)≤2x ⇒((2x−(4/3)x^3 )/(1+ax^2 )) ≤((sin(2x))/(1+ax^2 )) ≤ ((2x)/(1+ax^2 )) ⇒ ∫_0 ^1 ((2xdx)/(1+ax^2 )) −(4/3) ∫_0 ^1 (x^3 /(1+ax^2 ))dx ≤ ∫_0 ^1 ((sin(2x))/(1+ax^2 )) dx ≤ ∫_0 ^1 ((2x)/(1+ax^2 )) dx ∫_0 ^1 ((2xdx)/(ax^2 +1)) =(1/a) ∫_0 ^1 ((2ax dx)/(ax^2 +1)) =(1/a)[ln(ax^2 +1)]_0 ^1 =((ln(1+a))/a) ( we suppose a≠0 ) ∫_0 ^1 (x^3 /(ax^2 +1)) dx =(1/a) ∫_0 ^1 (((ax^2 +1)x−x)/(ax^2 +1)) dx =(1/a)∫_0 ^1 dx−(1/a) ∫_0 ^1 ((xdx)/(ax^2 +1)) =(1/a) −(1/(2a^2 )) ∫_0 ^1 ((2ax )/(ax^2 +1)) dx =(1/a) −(1/(2a^2 ))[ln(ax^2 +1)]_0 ^1 =(1/a) −((ln(a+1))/(2a^2 )) ⇒ ((ln(1+a))/a) −(4/(3a)) +((2ln(a+1))/(3a^2 )) ≤ f(a) ≤ ((ln(1+a))/a) ⇒ so we can take v_0 =((ln(1+a))/(2a)) −(2/(3a)) +((ln(1+a))/(3a^2 )) +((ln(1+a))/(2a)) =((ln(1+a))/a) −(2/(3a)) +((ln(1+a))/(3a^2 )) ⇒f(a) ∼ ((ln(1+a))/a) −(2/(3a)) +((ln(1+a))/(3a^2 )) with error δ = (1/2){ (4/(3a))−((2ln(a+1))/(3a^2 ))}](https://www.tinkutara.com/question/Q61454.png)
Commented by maxmathsup by imad last updated on 02/Jun/19

Commented by maxmathsup by imad last updated on 02/Jun/19
