Menu Close

let-f-a-0-cos-x-2-sin-x-2-x-2-a-2-2-dx-with-a-gt-0-1-calculate-f-a-2-find-the-values-of-0-cos-x-2-sin-x-2-x-2-1-2-dx-and-0-cos-x-2-sin-x-2-




Question Number 64970 by mathmax by abdo last updated on 23/Jul/19
let f(a)=∫_0 ^∞   ((cos(x^2 ) +sin(x^2 ))/((x^2  +a^2 )^2 )) dx   with a>0  1) calculate f(a)  2) find the values of ∫_0 ^∞   ((cos(x^2 )+sin(x^2 ))/((x^2 +1)^2 ))dx and  ∫_0 ^∞  ((cos(x^2 )+sin(x^2 ))/((x^2 +3)^2 ))dx
letf(a)=0cos(x2)+sin(x2)(x2+a2)2dxwitha>01)calculatef(a)2)findthevaluesof0cos(x2)+sin(x2)(x2+1)2dxand0cos(x2)+sin(x2)(x2+3)2dx
Commented by ~ À ® @ 237 ~ last updated on 23/Jul/19
      we  always have  cos(x^2 )+sin(x^2 )=1  so  f(a)=∫_0 ^∞ (1/((x^2 +a^2 )^2 ))dx  let change  x =a.tant        dx =a (1+tan^2 t)dt     f(a) = ∫_0 ^(π/2) ((a(1+tan^2 t)dt)/((a^2 tan^2 t +a^2 )^2 ))              =(1/a^3 ) ∫_0 ^(π/2) (1/((1+tan^2 t)))dt         =(1/a^3 ) ∫_(0   ) ^(π/2) cos^2 t  dt   knowing that  cos^2 t  =  ((1+cos2t)/2)   we  finally  got      f(a)= (1/a^3 ) [(t/2) +(1/4)sin2t]_0 ^(π/2)           =  (π/(4a^3 ))  then   f(1) = (π/4)      and  f((√3)) = (π/(12(√3)))
wealwayshavecos(x2)+sin(x2)=1sof(a)=01(x2+a2)2dxletchangex=a.tantdx=a(1+tan2t)dtf(a)=0π2a(1+tan2t)dt(a2tan2t+a2)2=1a30π21(1+tan2t)dt=1a30π2cos2tdtknowingthatcos2t=1+cos2t2wefinallygotf(a)=1a3[t2+14sin2t]0π2=π4a3thenf(1)=π4andf(3)=π123
Commented by mathmax by abdo last updated on 23/Jul/19
thank you sir.
thankyousir.
Commented by mathmax by abdo last updated on 23/Jul/19
really its cos(x^2 )−sin(x^2 )not + but nevermind i will post  another question...
reallyitscos(x2)sin(x2)not+butnevermindiwillpostanotherquestion
Commented by MJS last updated on 24/Jul/19
(cos x)^2 +(sin x)^2 =1  but  cos (x^2 ) +sin (x^2 ) =(√2)sin (x^2 +(π/4))  which is not always =1
(cosx)2+(sinx)2=1butcos(x2)+sin(x2)=2sin(x2+π4)whichisnotalways=1
Commented by mathmax by abdo last updated on 24/Jul/19
sir ∼ 237   you answer is not correct  ....
sir237youanswerisnotcorrect.
Commented by mathmax by abdo last updated on 24/Jul/19
you are right sir  i have commited a error i delet this post   and give the right answer ...
youarerightsirihavecommitedaerrorideletthispostandgivetherightanswer
Commented by mathmax by abdo last updated on 24/Jul/19
1)we have cos(x^2 )+sin(x^2 ) =(√2)cos(x^2 −(π/4)) ⇒  f(a) =(√2)∫_0 ^∞    ((cos(x^2 −(π/4)))/((x^2  +a^2 )^2 ))dx ⇒2f(a) =(√2)∫_(−∞) ^(+∞)  ((cos(x^2 −(π/4)))/((x^2  +a^2 )^2 ))dx  ⇒(√2)f(a) =Re(∫_(−∞) ^(+∞)   (e^(i(x^2 −(π/4))) /((x^2  +a^2 )^2 ))ex) let ϕ(z) =(e^(i(z^2 −(π/4))) /((z^2  +a^2 )^2 )) ⇒  ϕ(z) =(e^(i(z^2 −(π/4))) /((z−ia)^2 (z+ia)^2 ))  the poles of ϕ are +^− ia  (a>0) residus  theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ia)  Res(ϕ,ia) =lim_(z→ia) (z−ia)^2 {(z−ia)^2 ϕ(z)}^((1))   =lim_(z→ia)   {(e^(i(z^2 −(π/4))) /((z+ia)^2 ))}^((1))  =e^(−((iπ)/4))  lim_(z→ia)    {(e^(iz^2 ) /((z+ia)^2 ))}^((1))   =e^(−((iπ)/4))    lim_(z→ia)    ((2iz e^(iz^2 ) (z+ia)^2  −2(z+ia)e^(iz^2 ) )/((z+ia)^4 ))  =e^(−((iπ)/4))  lim_(z→ia)     (((2iz(z+ia)−2)e^(iz^2 ) )/((z+ia)^3 ))  =e^(−i(π/4))   ((2i(ia)(2ia)−2)/((2ia)^3 )) e^(i(ia)^2 ) = e^(−((iπ)/4))   ((−4ia^2 −2)/(−8ia^3 )) e^(−ia^2 )   =((2ia^2 −1)/(4ia^3 )) e^(−i((π/4)+a^2 ))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((2ia^2 −1)/(4ia^3 )) e^(−i((π/4)+a^2 ))   =−(π/(2a^3 ))(1−2ia^2 )( cos((π/4)+a^2 )−isin((π/4)+a^2 ))  =−(π/(2a^3 )){cos((π/4)+a^2 )−isin((π/4)+a^2 )−2ia^2 cos((π/4)+a^2 )−2a^2 sin((π/4)+a^2 )}  (√2)f(a) =−(π/(2a^3 ))(cos((π/4)+a^2 )−2a^2 sin((π/4) +a^2 ))  =−(π/(2a^3 ))cos((π/4)+a^2 ) +(π/a) sin((π/4) +a^2 ) ⇒  f(a) =(π/(a(√2)))sin((π/4) +a^2 )−(π/(2(√2)a^3 )) cos((π/4) +a^2 )
1)wehavecos(x2)+sin(x2)=2cos(x2π4)f(a)=20cos(x2π4)(x2+a2)2dx2f(a)=2+cos(x2π4)(x2+a2)2dx2f(a)=Re(+ei(x2π4)(x2+a2)2ex)letφ(z)=ei(z2π4)(z2+a2)2φ(z)=ei(z2π4)(zia)2(z+ia)2thepolesofφare+ia(a>0)residustheoremgive+φ(z)dz=2iπRes(φ,ia)Res(φ,ia)=limzia(zia)2{(zia)2φ(z)}(1)=limzia{ei(z2π4)(z+ia)2}(1)=eiπ4limzia{eiz2(z+ia)2}(1)=eiπ4limzia2izeiz2(z+ia)22(z+ia)eiz2(z+ia)4=eiπ4limzia(2iz(z+ia)2)eiz2(z+ia)3=eiπ42i(ia)(2ia)2(2ia)3ei(ia)2=eiπ44ia228ia3eia2=2ia214ia3ei(π4+a2)+φ(z)dz=2iπ2ia214ia3ei(π4+a2)=π2a3(12ia2)(cos(π4+a2)isin(π4+a2))=π2a3{cos(π4+a2)isin(π4+a2)2ia2cos(π4+a2)2a2sin(π4+a2)}2f(a)=π2a3(cos(π4+a2)2a2sin(π4+a2))=π2a3cos(π4+a2)+πasin(π4+a2)f(a)=πa2sin(π4+a2)π22a3cos(π4+a2)
Commented by mathmax by abdo last updated on 24/Jul/19
2) ∫_0 ^∞    ((cos(x^2 )+sin(x^2 ))/((x^2 +1)^2 ))dx =f(1) =(π/( (√2)))sin((π/4)+1)−(π/(2(√2)))cos((π/4)+1)  ∫_0 ^∞   ((cos(x^2 )+sin(x^2 ))/((x^2  +3)^2 )) =f((√3)) =(π/( (√6)))sin((π/4)+3)−(π/(2(√2)3(√3))) cos((π/4)+3)  =(π/( (√6)))sin(3+(π/4))−(π/(6(√6))) cos(3+(π/4)).
2)0cos(x2)+sin(x2)(x2+1)2dx=f(1)=π2sin(π4+1)π22cos(π4+1)0cos(x2)+sin(x2)(x2+3)2=f(3)=π6sin(π4+3)π2233cos(π4+3)=π6sin(3+π4)π66cos(3+π4).
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
   yes  you are right . I did not mind the difference at this time  . Sorry
yesyouareright.Ididnotmindthedifferenceatthistime.Sorry

Leave a Reply

Your email address will not be published. Required fields are marked *