Menu Close

let-f-a-0-dx-x-n-a-n-with-n-integr-2-and-a-gt-0-1-calculate-f-a-intems-of-a-2-let-g-a-0-dx-x-n-a-n-2-calculate-g-a-interms-of-a-3-find-the-values-of-i




Question Number 56345 by maxmathsup by imad last updated on 14/Mar/19
let  f(a) =∫_0 ^∞      (dx/(x^n  +a^n ))   with n integr ≥2  and a>0  1) calculate f(a) intems of a  2) let g(a) =∫_0 ^∞    (dx/((x^n  +a^n )^2 ))  calculate g(a) interms of a  3) find the values of integrals ∫_0 ^∞   (dx/(x^8 +16))   and ∫_0 ^∞    (dx/((x^8  +16)^2 ))
letf(a)=0dxxn+anwithnintegr2anda>01)calculatef(a)intemsofa2)letg(a)=0dx(xn+an)2calculateg(a)intermsofa3)findthevaluesofintegrals0dxx8+16and0dx(x8+16)2
Commented by maxmathsup by imad last updated on 17/Mar/19
1) changement x=at give f(a) =∫_0 ^∞    ((adt)/(a^n t^n  +a^n )) =(1/a^(n−1) ) ∫_0 ^∞   (dt/(t^n  +1))  ∫_0 ^∞   (dt/(t^n  +1)) =_(t=u^(1/n) )     ∫_0 ^∞    (1/(n(1+u))) u^((1/n)−1)  du =(1/n) ∫_0 ^∞   (u^((1/n)−1) /(1+u)) du  =(1/n) (π/(sin((π/n)))) =(π/(nsin((π/n))))    (we have proved that ∫_0 ^∞   (x^(a−1) /(1+x)) dx =(π/(sin(πa))) with 0<a<1) ⇒  ★f(a) =(π/(n a^(n−1) sin((π/n))))★  with n≥2  2)we have f^′ (a) =∫_0 ^∞   (∂/∂a)((1/(x^n  +a^n )))dx =−∫_0 ^∞    ((na^(n−1) )/((x^n  +a^n )^2 ))dx  =−na^(n−1)  g(a) ⇒g(a) =−((f(a))/(na^(n−1) )) =−(1/(na^(n−1) )) (π/(n a^(n−1) sin((π/n)))) ⇒  ★g(a)=−(π/(n^2  a^(2n−2)  sin((π/n)))) ★  3) we have ∫_0 ^∞   (dx/(x^8  +16)) =∫_0 ^∞    (dx/(x^8  +((√2))^8 ))  ⇒n=8 and a=(√2) ⇒  ∫_0 ^∞   (dx/(x^8  +16)) = (π/(8((√2))^7  sin((π/8))))  also we have  ∫_0 ^∞   (dx/((x^8  +16)^2 )) =∫_0 ^∞    (dx/((x^2  +((√2))^8 )^2 )) ⇒n=8 and a=(√2)  at g(a) ⇒  ∫_0 ^∞    (dx/((x^8  +16)^2 )) =(π/(64 ((√2))^(14)  sin((π/8)))) =(π/(64 .2^7  sin((π/8))))   with  sin((π/8)) =((√(2−(√2)))/2) .
1)changementx=atgivef(a)=0adtantn+an=1an10dttn+10dttn+1=t=u1n01n(1+u)u1n1du=1n0u1n11+udu=1nπsin(πn)=πnsin(πn)(wehaveprovedthat0xa11+xdx=πsin(πa)with0<a<1)f(a)=πnan1sin(πn)withn22)wehavef(a)=0a(1xn+an)dx=0nan1(xn+an)2dx=nan1g(a)g(a)=f(a)nan1=1nan1πnan1sin(πn)g(a)=πn2a2n2sin(πn)3)wehave0dxx8+16=0dxx8+(2)8n=8anda=20dxx8+16=π8(2)7sin(π8)alsowehave0dx(x8+16)2=0dx(x2+(2)8)2n=8anda=2atg(a)0dx(x8+16)2=π64(2)14sin(π8)=π64.27sin(π8)withsin(π8)=222.

Leave a Reply

Your email address will not be published. Required fields are marked *