let-f-a-0-dx-x-n-a-n-with-n-integr-2-and-a-gt-0-1-calculate-f-a-intems-of-a-2-let-g-a-0-dx-x-n-a-n-2-calculate-g-a-interms-of-a-3-find-the-values-of-i Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 56345 by maxmathsup by imad last updated on 14/Mar/19 letf(a)=∫0∞dxxn+anwithnintegr⩾2anda>01)calculatef(a)intemsofa2)letg(a)=∫0∞dx(xn+an)2calculateg(a)intermsofa3)findthevaluesofintegrals∫0∞dxx8+16and∫0∞dx(x8+16)2 Commented by maxmathsup by imad last updated on 17/Mar/19 1)changementx=atgivef(a)=∫0∞adtantn+an=1an−1∫0∞dttn+1∫0∞dttn+1=t=u1n∫0∞1n(1+u)u1n−1du=1n∫0∞u1n−11+udu=1nπsin(πn)=πnsin(πn)(wehaveprovedthat∫0∞xa−11+xdx=πsin(πa)with0<a<1)⇒★f(a)=πnan−1sin(πn)★withn⩾22)wehavef′(a)=∫0∞∂∂a(1xn+an)dx=−∫0∞nan−1(xn+an)2dx=−nan−1g(a)⇒g(a)=−f(a)nan−1=−1nan−1πnan−1sin(πn)⇒★g(a)=−πn2a2n−2sin(πn)★3)wehave∫0∞dxx8+16=∫0∞dxx8+(2)8⇒n=8anda=2⇒∫0∞dxx8+16=π8(2)7sin(π8)alsowehave∫0∞dx(x8+16)2=∫0∞dx(x2+(2)8)2⇒n=8anda=2atg(a)⇒∫0∞dx(x8+16)2=π64(2)14sin(π8)=π64.27sin(π8)withsin(π8)=2−22. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-121878Next Next post: Question-121884 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.