Menu Close

let-f-a-0-e-ax-ln-x-dx-with-a-gt-0-1-find-f-a-2-find-0-e-ax-xlnx-dx-3-calculate-0-e-2x-xlnx-dx-




Question Number 32031 by abdo imad last updated on 18/Mar/18
let  f(a) = ∫_0 ^∞   e^(−ax) ln(x)dx  with a>0  1) find f(a)   2)  find  ∫_0 ^∞   e^(−ax) (xlnx)dx  3) calculate  ∫_0 ^∞   e^(−2x) (xlnx)dx  .
letf(a)=0eaxln(x)dxwitha>01)findf(a)2)find0eax(xlnx)dx3)calculate0e2x(xlnx)dx.
Commented by abdo imad last updated on 20/Mar/18
ch. ax =t give f(a) =∫_0 ^∞  e^(−t) ln ((t/a))(dt/a)  =(1/a) ∫_0 ^∞  e^(−t) (ln(t) −ln(a))dt   = (1/a)∫_0 ^∞  e^(−t) ln(t)dt −((ln(a))/a) ∫_0 ^∞  e^(−t)  dt but we have proved  that ∫_0 ^∞  e^(−t) ln(t)dt =−γ  ⇒ f(a) =−(γ/a) −((ln(a))/a)  2) we have f^′ (a) = −∫_0 ^∞  x e^(−ax)  ln(x)dx ⇒  ∫_0 ^∞  e^(−ax)  (xln(x))dx = −f^′ (a)  from another side  f^′ (a) = (γ/a^2 )  − ((1 −ln(a))/a^2 ) = ((γ +ln(a) −1)/a^2 ) ⇒  ∫_0 ^∞   e^(−ax) (xlnx)dx= ((1−γ −ln(a))/a^2 )  3) from rel. 2) let take a=2 we get  ∫_0 ^∞   e^(−2x)  (xln(x))dx = ((1−γ −ln(2))/4)  .
ch.ax=tgivef(a)=0etln(ta)dta=1a0et(ln(t)ln(a))dt=1a0etln(t)dtln(a)a0etdtbutwehaveprovedthat0etln(t)dt=γf(a)=γaln(a)a2)wehavef(a)=0xeaxln(x)dx0eax(xln(x))dx=f(a)fromanothersidef(a)=γa21ln(a)a2=γ+ln(a)1a20eax(xlnx)dx=1γln(a)a23)fromrel.2)lettakea=2weget0e2x(xln(x))dx=1γln(2)4.

Leave a Reply

Your email address will not be published. Required fields are marked *