let-f-a-0-e-ax-ln-x-dx-with-a-gt-0-1-find-f-a-2-find-0-e-ax-xlnx-dx-3-calculate-0-e-2x-xlnx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32031 by abdo imad last updated on 18/Mar/18 letf(a)=∫0∞e−axln(x)dxwitha>01)findf(a)2)find∫0∞e−ax(xlnx)dx3)calculate∫0∞e−2x(xlnx)dx. Commented by abdo imad last updated on 20/Mar/18 ch.ax=tgivef(a)=∫0∞e−tln(ta)dta=1a∫0∞e−t(ln(t)−ln(a))dt=1a∫0∞e−tln(t)dt−ln(a)a∫0∞e−tdtbutwehaveprovedthat∫0∞e−tln(t)dt=−γ⇒f(a)=−γa−ln(a)a2)wehavef′(a)=−∫0∞xe−axln(x)dx⇒∫0∞e−ax(xln(x))dx=−f′(a)fromanothersidef′(a)=γa2−1−ln(a)a2=γ+ln(a)−1a2⇒∫0∞e−ax(xlnx)dx=1−γ−ln(a)a23)fromrel.2)lettakea=2weget∫0∞e−2x(xln(x))dx=1−γ−ln(2)4. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-163100Next Next post: 0-pi-4-tan-x-1-tan-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.