Menu Close

let-f-a-0-ln-1-a-2-x-2-dx-1-find-a-explicit-form-of-f-x-2-find-0-ln-1-1-x-2-dx-3-calculate-0-ln-1-2-x-2-dx-




Question Number 44305 by abdo.msup.com last updated on 26/Sep/18
let f(a) =∫_0 ^∞  ln(1+(a^2 /x^2 ))dx  1) find a explicit form of f(x)  2)find ∫_0 ^∞  ln(1+(1/x^2 ))dx  3)calculate ∫_0 ^∞  ln(1+(2/x^2 ))dx
letf(a)=0ln(1+a2x2)dx1)findaexplicitformoff(x)2)find0ln(1+1x2)dx3)calculate0ln(1+2x2)dx
Commented by maxmathsup by imad last updated on 29/Sep/18
1) we have f^′ (a) =∫_0 ^∞   (((2a)/x^2 )/(1+(a^2 /x^2 )))dx = ∫_0 ^∞   ((2a)/(x^2  +a^2 ))dx  =_(x=∣a∣t)   ∫_0 ^∞    ((2a)/(a^2 (1+t^2 ))) ∣a∣ dt = 2ξ(a)∫_0 ^∞  (dt/(1+t^2 )) =2ξ(a).(π/2) =πξ(a) with  ξ(a)=1 if a>0 and ξ(a)=−1 if a<0 ⇒f(a)=πaξ(a)+c  c=f(0) ⇒f(a) =πa ξ(a)  2)∫_0 ^∞  ln(1+(1/x^2 ))dx =f(1)=π  3) ∫_0 ^∞  ln(1+(2/x^2 ))dx =f((√2)) =π(√2).
1)wehavef(a)=02ax21+a2x2dx=02ax2+a2dx=x=∣at02aa2(1+t2)adt=2ξ(a)0dt1+t2=2ξ(a).π2=πξ(a)withξ(a)=1ifa>0andξ(a)=1ifa<0f(a)=πaξ(a)+cc=f(0)f(a)=πaξ(a)2)0ln(1+1x2)dx=f(1)=π3)0ln(1+2x2)dx=f(2)=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *