Menu Close

let-f-a-0-ln-x-x-2-a-with-a-gt-0-1-calculate-f-a-intermsof-a-2-find-the-values-of-0-ln-x-x-2-1-dx-and-0-ln-x-x-2-2-dx-3-let-g-a-0-ln-x-




Question Number 55454 by maxmathsup by imad last updated on 24/Feb/19
let f(a) =∫_0 ^∞   ((ln(x))/(x^2  +a))  with a>0  1) calculate f(a) intermsof a  2) find the values of ∫_0 ^∞  ((ln(x))/(x^2 +1))dx and ∫_0 ^∞   ((ln(x))/(x^2  +2))dx  3) let g(a) =∫_0 ^∞    ((ln(x))/((x^2  +a)^n )) dx  .calculate g(a) interms of a  4) find values> of ∫_0 ^∞   ((ln(x))/((x^2  +3)^2 ))dx  5) find nature of the serie Σ f(n)  andΣ g(n)
letf(a)=0ln(x)x2+awitha>01)calculatef(a)intermsofa2)findthevaluesof0ln(x)x2+1dxand0ln(x)x2+2dx3)letg(a)=0ln(x)(x2+a)ndx.calculateg(a)intermsofa4)findvalues>of0ln(x)(x2+3)2dx5)findnatureoftheserieΣf(n)andΣg(n)
Commented by maxmathsup by imad last updated on 24/Feb/19
g(a) =∫_0 ^∞  ((ln(x))/((x^2  +a)^2 ))dx .
g(a)=0ln(x)(x2+a)2dx.
Commented by maxmathsup by imad last updated on 26/Feb/19
1) changement x =(√a)t give f(a) =∫_0 ^∞  ((ln((√a)t))/(a(t^2 +1))) (√a)dt =(1/( (√a))) ∫_0 ^∞  ((ln((√a))+ln(t))/(1+t^2 ))dt  =((ln((√(a))))/( (√a)))∫_0 ^∞  (dt/(1+t^2 )) +(1/( (√a)))∫_0 ^∞  ((ln(t))/(1+t^2 )) dt  but chang.t =(1/u) drive to ∫_0 ^∞  ((ln(t))/(1+t^2 ))dt=0 ⇒  f(a) =(π/2) ((ln((√a)))/( (√a))) ⇒ ★f(a) =(π/4) ((ln(a))/( (√a))) ★  2)we have ∫_0 ^∞  ((ln(x))/(x^2  +1))dx =f(1) =0  ∫_0 ^∞  ((ln(x))/(x^2  +2)) dx =f(2) =((πln(2))/(4(√2)))  3)we have f^′ (a) =−∫_0 ^∞   ((ln(x))/((x^2  +a)^2 )) dx =−g(a) ⇒g(a)=−f^′ (a)  but f^′ (a) =(π/4) ((((√a)/a)−ln(a)(1/(2(√a))))/a) =(π/4) (((2a−aln(a))/(2a(√a)))/a) =(π/4) ((2−lna)/(2a(√a))) ⇒  ★g(a) =((π(ln(a)−2))/(8a(√a)))★  4)∫_0 ^∞    ((ln(x))/((x^2  +3)^2 ))dx =g(3)=((π(ln3−2))/(24(√3)))
1)changementx=atgivef(a)=0ln(at)a(t2+1)adt=1a0ln(a)+ln(t)1+t2dt=ln(a)a0dt1+t2+1a0ln(t)1+t2dtbutchang.t=1udriveto0ln(t)1+t2dt=0f(a)=π2ln(a)af(a)=π4ln(a)a2)wehave0ln(x)x2+1dx=f(1)=00ln(x)x2+2dx=f(2)=πln(2)423)wehavef(a)=0ln(x)(x2+a)2dx=g(a)g(a)=f(a)butf(a)=π4aaln(a)12aa=π42aaln(a)2aaa=π42lna2aag(a)=π(ln(a)2)8aa4)0ln(x)(x2+3)2dx=g(3)=π(ln32)243
Commented by maxmathsup by imad last updated on 26/Feb/19
5) we have Σ_(n≥1)  f(n) =(π/4)Σ_(n≥1)    ((ln(n))/( (√n)))  let ϕ(t)=((ln(t))/( (√t)))   ⇒ϕ^′ (t) =((((√t)/t)−ln(t)(1/(2(√t))))/t) =(((1/( (√t)))−((ln(t))/(2(√t))))/t) =((2−ln(t))/(2t(√t)))  for t≥e^2  ⇒ln(t)≥2 ⇒ ϕ^′ (t)≤0 ⇒ ϕ is decreasing  so Σ f(n) and   ∫_e^2  ^(+∞)  ((ln(x))/( (√x))) dx have the same nature   ∫_e^2  ^(+∞)   ((ln(x))/( (√x))) dx =_(x=t^2 )      ∫_e ^(+∞)   ((2ln(t))/t) (2t)dt = 4∫_e ^(+∞) ln(t)dt =+∞ ⇒  Σ f(n) is divergent .
5)wehaven1f(n)=π4n1ln(n)nletφ(t)=ln(t)tφ(t)=ttln(t)12tt=1tln(t)2tt=2ln(t)2ttforte2ln(t)2φ(t)0φisdecreasingsoΣf(n)ande2+ln(x)xdxhavethesamenaturee2+ln(x)xdx=x=t2e+2ln(t)t(2t)dt=4e+ln(t)dt=+Σf(n)isdivergent.

Leave a Reply

Your email address will not be published. Required fields are marked *