Menu Close

let-f-a-0-pi-2-dx-1-asinx-with-a-R-1-find-a-simple-form-of-f-a-2-calculate-0-pi-2-dx-1-sinx-and-0-pi-2-dx-1-2sinx-3-find-the-value-of-0-pi-2-cosx-




Question Number 41848 by maxmathsup by imad last updated on 13/Aug/18
let f(a) = ∫_0 ^(π/2)     (dx/(1+asinx))   with a∈R  1) find a simple form of f(a)  2) calculate ∫_0 ^(π/2)   (dx/(1+sinx)) and ∫_0 ^(π/2)    (dx/(1+2sinx))  3) find the value of  ∫_0 ^(π/2)   ((cosx)/((1+asinx)^2 ))dx  4) find the value of ∫_0 ^(π/2)    ((cosx)/((1+sinx)^2 ))dx and   ∫_0 ^(π/2)   ((cosx)/((1+2sinx)^2 ))dx
letf(a)=0π2dx1+asinxwithaR1)findasimpleformoff(a)2)calculate0π2dx1+sinxand0π2dx1+2sinx3)findthevalueof0π2cosx(1+asinx)2dx4)findthevalueof0π2cosx(1+sinx)2dxand0π2cosx(1+2sinx)2dx
Commented by maxmathsup by imad last updated on 14/Aug/18
1) changement tan((x/2))=t give  f(a) = ∫_0 ^1      (1/(1+a((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^1    ((2dt)/(1+t^2  +2at)) =∫_0 ^1    ((2dt)/(t^2  +2at +1))  roots of t^2  +2at +1  Δ^′  =a^2 −1     case 1   a^2 >1 ⇒ ∣a∣>1  ⇒ t_1 =−a +(√(a^2  −1))  qnd t_2 =−a−(√(a^2 −1))  and  F(t) =(2/(t^2  +2at +1)) =(2/((t−t_1 )(t−t_2 ))) =(α/(t−t_1 )) +(β/(t−t_2 ))    α = (2/(t_1 −t_2 )) = (2/(2(√(a^2 −1)))) = (1/( (√(a^2  −1))))  and β =(2/(t_2 −t_1 )) =−(1/( (√(a^2 −1)))) ⇒  F(t) =(1/( (√(a^2 −1)))){  (1/(t−t_1 )) −(1/(t−t_2 ))} ⇒f(a) =∫_0 ^1   (1/( (√(a^2 −1)))){  (1/(t−t_1 ))−(1/(t−t_2 ))}dt  = (1/( (√(a^2 −1))))  [ln∣ ((t−t_1 )/(t−t_2 ))∣]_0 ^1  = (1/( (√(a^2  −1)))) { ln∣ ((1+a−(√(a^2 −1)))/(1+a+(√(a^2 −1))))∣−ln∣ ((a−(√(a^2 −1)))/(a+(√(a^2 −1))))∣}  case 2  a^2 <1 ⇒ −1<a<1  ⇒ no real roots ⇒  f(a) =∫_0 ^1      ((2dt)/(t^2  +2at +a^2  +1−a^2 )) = ∫_0 ^1   ((2dt)/((t+a)^2  +1−a^2 ))  changement  t+a =(√(1−a^2 ))u give f(a) = ∫_(a/( (√(1−a^2 )))) ^((1+a)/( (√(1−a^2 ))))       ((2 (√(1−a^2 ))du)/((1−a^2 )(1+u^2 )))  = (2/( (√(1−a^2 ))))  { arctan(((1+a)/( (√(1−a^2 )))))−arctan((a/( (√(1−a^2 )))))}
1)changementtan(x2)=tgivef(a)=0111+a2t1+t22dt1+t2=012dt1+t2+2at=012dtt2+2at+1rootsoft2+2at+1Δ=a21case1a2>1a∣>1t1=a+a21qndt2=aa21andF(t)=2t2+2at+1=2(tt1)(tt2)=αtt1+βtt2α=2t1t2=22a21=1a21andβ=2t2t1=1a21F(t)=1a21{1tt11tt2}f(a)=011a21{1tt11tt2}dt=1a21[lntt1tt2]01=1a21{ln1+aa211+a+a21lnaa21a+a21}case2a2<11<a<1norealrootsf(a)=012dtt2+2at+a2+1a2=012dt(t+a)2+1a2changementt+a=1a2ugivef(a)=a1a21+a1a221a2du(1a2)(1+u2)=21a2{arctan(1+a1a2)arctan(a1a2)}
Commented by maxmathsup by imad last updated on 14/Aug/18
2)  ∫_0 ^(π/2)    (dx/(1+2sinx)) =f(2) = (1/( (√3))){ ln∣ ((3−(√3))/(3+(√3)))∣ −ln∣ ((2−(√3))/(2+(√3)))∣}  =(1/( (√3))){ ln(((3−(√3))/(3+(√3))))−ln(((2−(√3))/(2+(√3))))}  let calculate  ∫_0 ^(π/2)   (dx/(1+sinx))  ∫_0 ^(π/2)    (dx/(1+sinx)) =_(tan((x/2)) =u)   ∫_0 ^1       (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) = ∫_0 ^1    ((2du)/(1+u^2  +2t))  = ∫_0 ^1    ((2du)/((u+1)^2 )) =[((−2)/(1+u))]_0 ^1  =−2((1/2) −1)= 1 .
2)0π2dx1+2sinx=f(2)=13{ln333+3ln232+3}=13{ln(333+3)ln(232+3)}letcalculate0π2dx1+sinx0π2dx1+sinx=tan(x2)=u0111+2u1+u22du1+u2=012du1+u2+2t=012du(u+1)2=[21+u]01=2(121)=1.
Commented by maxmathsup by imad last updated on 15/Aug/18
3) we have  f(a) = ∫_0 ^(π/2)     (dx/(1+a sinx)) ⇒f^′ (a) =−∫_0 ^(π/2)    ((sinx)/((1+asinx)^2 )) dx  ⇒ ∫_0 ^(π/2)    ((sinx)/((1+a sinx)^2 )) dx =−f^′ (a)  if −1<a<1  f(a) = (2/( (√(1−a^2 )))){ arctan(((1+a)/( (√(1−a^2 )))))−arctan((a/( (√(1−a^2 ))))) ⇒  f^′ (a) = 2 (−((−a)/( (√(1−a^2 )))))×(1/((1−a^2 ))){ arctan(((1+a)/( (√(1−a^2 )))))−arctan((a/( (√(1−a^2 )))))}  +(2/( (√(1−a^2 )))) {     (((((1+a)/( (√(1−a^2 )))))^′ )/(1+(((1+a)/( (√(1−a^2 )))))^2 )) −((((a/( (√(1−a^2 )))))^′ )/(1+((a/( (√(1−a^2 )))))^2 ))}  but  (((1+a)/( (√(1−a^2 )))))^′   =(((√(1−a^2 )) −(1+a)(((−2a)/(2(√(1−a^2 ))))))/(1−a^2 )) = ((1−a^2  +a+a^2 )/((1−a^2 )(√(1−a^2 )))) =((1+a)/((1−a^2 )(√(1−a^2 ))))  ((a/( (√(1−a^2 )))))^′  = (((√(1−a^2 ))  −a (((−a)/( (√(1−a^2 ))))))/((1−a^2 ))) =((1−a^2  +a^2 )/((1−a^2 )(√(1−a^2 )))) =(1/((1−a^2 )(√(1−a^2 )))) ⇒  f^′ (a) = ((2a)/((1−a^2 )(√(1−a^2 )))){ arctan(((1+a)/( (√(1−a^2 ))))) −arctan((a/( (√(1−a^2 )))))}  +(2/( (√(1−a^2 )))){     ((1+a)/((1−a^2 )(√(1−a^2 ))(1+(((1+a)^2 )/(1−a^2 ))))) −  (1/((1−a^2 )(√(1−a^2 ))(1+(a^2 /(1−a^2 )))))}  if ∣a∣>1 we follow the same way .
3)wehavef(a)=0π2dx1+asinxf(a)=0π2sinx(1+asinx)2dx0π2sinx(1+asinx)2dx=f(a)if1<a<1f(a)=21a2{arctan(1+a1a2)arctan(a1a2)f(a)=2(a1a2)×1(1a2){arctan(1+a1a2)arctan(a1a2)}+21a2{(1+a1a2)1+(1+a1a2)2(a1a2)1+(a1a2)2}but(1+a1a2)=1a2(1+a)(2a21a2)1a2=1a2+a+a2(1a2)1a2=1+a(1a2)1a2(a1a2)=1a2a(a1a2)(1a2)=1a2+a2(1a2)1a2=1(1a2)1a2f(a)=2a(1a2)1a2{arctan(1+a1a2)arctan(a1a2)}+21a2{1+a(1a2)1a2(1+(1+a)21a2)1(1a2)1a2(1+a21a2)}ifa∣>1wefollowthesameway.

Leave a Reply

Your email address will not be published. Required fields are marked *