Question Number 41848 by maxmathsup by imad last updated on 13/Aug/18

Commented by maxmathsup by imad last updated on 14/Aug/18
![1) changement tan((x/2))=t give f(a) = ∫_0 ^1 (1/(1+a((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^1 ((2dt)/(1+t^2 +2at)) =∫_0 ^1 ((2dt)/(t^2 +2at +1)) roots of t^2 +2at +1 Δ^′ =a^2 −1 case 1 a^2 >1 ⇒ ∣a∣>1 ⇒ t_1 =−a +(√(a^2 −1)) qnd t_2 =−a−(√(a^2 −1)) and F(t) =(2/(t^2 +2at +1)) =(2/((t−t_1 )(t−t_2 ))) =(α/(t−t_1 )) +(β/(t−t_2 )) α = (2/(t_1 −t_2 )) = (2/(2(√(a^2 −1)))) = (1/( (√(a^2 −1)))) and β =(2/(t_2 −t_1 )) =−(1/( (√(a^2 −1)))) ⇒ F(t) =(1/( (√(a^2 −1)))){ (1/(t−t_1 )) −(1/(t−t_2 ))} ⇒f(a) =∫_0 ^1 (1/( (√(a^2 −1)))){ (1/(t−t_1 ))−(1/(t−t_2 ))}dt = (1/( (√(a^2 −1)))) [ln∣ ((t−t_1 )/(t−t_2 ))∣]_0 ^1 = (1/( (√(a^2 −1)))) { ln∣ ((1+a−(√(a^2 −1)))/(1+a+(√(a^2 −1))))∣−ln∣ ((a−(√(a^2 −1)))/(a+(√(a^2 −1))))∣} case 2 a^2 <1 ⇒ −1<a<1 ⇒ no real roots ⇒ f(a) =∫_0 ^1 ((2dt)/(t^2 +2at +a^2 +1−a^2 )) = ∫_0 ^1 ((2dt)/((t+a)^2 +1−a^2 )) changement t+a =(√(1−a^2 ))u give f(a) = ∫_(a/( (√(1−a^2 )))) ^((1+a)/( (√(1−a^2 )))) ((2 (√(1−a^2 ))du)/((1−a^2 )(1+u^2 ))) = (2/( (√(1−a^2 )))) { arctan(((1+a)/( (√(1−a^2 )))))−arctan((a/( (√(1−a^2 )))))}](https://www.tinkutara.com/question/Q41890.png)
Commented by maxmathsup by imad last updated on 14/Aug/18
![2) ∫_0 ^(π/2) (dx/(1+2sinx)) =f(2) = (1/( (√3))){ ln∣ ((3−(√3))/(3+(√3)))∣ −ln∣ ((2−(√3))/(2+(√3)))∣} =(1/( (√3))){ ln(((3−(√3))/(3+(√3))))−ln(((2−(√3))/(2+(√3))))} let calculate ∫_0 ^(π/2) (dx/(1+sinx)) ∫_0 ^(π/2) (dx/(1+sinx)) =_(tan((x/2)) =u) ∫_0 ^1 (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) = ∫_0 ^1 ((2du)/(1+u^2 +2t)) = ∫_0 ^1 ((2du)/((u+1)^2 )) =[((−2)/(1+u))]_0 ^1 =−2((1/2) −1)= 1 .](https://www.tinkutara.com/question/Q41891.png)
Commented by maxmathsup by imad last updated on 15/Aug/18
