Menu Close

let-f-a-0-pi-d-a-sin-2-a-from-R-1-find-f-a-2-calculate-g-a-0-pi-d-a-sin-2-2-3-calculate-0-pi-d-1-sin-2-and-0-pi-d-2-sin-2-4-calculate-0




Question Number 38210 by prof Abdo imad last updated on 22/Jun/18
let f(a)= ∫_0 ^π    (dθ/(a +sin^2 θ))   (a from R)  1) find f(a)  2)calculate g(a)= ∫_0 ^π    (dθ/((a+sin^2 θ)^2 ))  3)calculate ∫_0 ^π     (dθ/(1+sin^2 θ)) and ∫_0 ^π   (dθ/(2+sin^2 θ))  4) calculate ∫_0 ^π    (dθ/((3 +sin^2 θ)^2 )) .
letf(a)=0πdθa+sin2θ(afromR)1)findf(a)2)calculateg(a)=0πdθ(a+sin2θ)23)calculate0πdθ1+sin2θand0πdθ2+sin2θ4)calculate0πdθ(3+sin2θ)2.
Commented by math khazana by abdo last updated on 23/Jun/18
we have f(a) =∫_0 ^π     (dθ/(a +((1−cos(2θ))/2)))  = ∫_0 ^π   ((2dθ)/(2a+1 −cos(2θ))) =_(2θ=t)   ∫_0 ^(2π)     (2/(2a+1−cost)) (dt/2)  = ∫_0 ^(2π)     (dt/(2a+1 −cost))  changement e^(it) =z give  f(a) = ∫_(∣z∣=1)       (1/(2a+1−((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)     ((−2idz)/(z{  4a+2−z−z^(−1) }))  =∫_(∣z∣=1)   ((−2idz)/((4a+2)z−z^2 −1)) =∫_(∣z∣=1)    ((2idz)/(z^2 −(4a+2)z +1))  let ϕ(z)= ((2i)/(z^2  −(4a+2)z +1)) .poles of ϕ?  Δ^′  =(2a+1)^2  −1=4a^2  +4a =4a(a+1)  case 1  a(a+1)>0 ⇒z_1 = 2a+1 +2(√(a^2  +a))  z_2 =2a+1−2(√(a^2 +a))  ∣z_2 ∣ −1 =2a−2(√(a^2  +a))<0 and its clear that  ∣z_1 ∣−1>0(to elominate from residus)  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_2 ) =((2i)/(z_2 −z_1 )) 2iπ  =((−4π)/(−4(√(a^2 +a)))) = (π/( (√(a^2 +a)))) ⇒  f(a)=(π/( (√(a^2  +a))))  case 2 a(a+1)<0  ⇔−1<a<0 ⇒Δ^, =−4(−a(a+1))  =(2i(√(−a^2 −a)))^2   z_1 = 2a+1 +2i(√(−a^2 −a))  z_2 =2a+1−2i(√(−a^2 −a))  ∣z_1 ∣=(√( (2a+1)^2  +4(−a^2 −a)))  =(√(4a^2 +4a +1−4a^2 −4a))=1  ∣z_2 ∣=1 ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ {Res(ϕ,z_1 )+Res(ϕ,z_2 )}  Res(ϕ,z_1 ) = ((2i)/(z_1 −z_2 ))  Res(ϕ,z_2 ) = ((2i)/(z_2 −z_1 )) ⇒ ∫_(∣z∣=1)  ϕ(z)dz=0 ⇒f(a)=0
wehavef(a)=0πdθa+1cos(2θ)2=0π2dθ2a+1cos(2θ)=2θ=t02π22a+1costdt2=02πdt2a+1costchangementeit=zgivef(a)=z∣=112a+1z+z12dziz=z∣=12idzz{4a+2zz1}=z∣=12idz(4a+2)zz21=z∣=12idzz2(4a+2)z+1letφ(z)=2iz2(4a+2)z+1.polesofφ?Δ=(2a+1)21=4a2+4a=4a(a+1)case1a(a+1)>0z1=2a+1+2a2+az2=2a+12a2+az21=2a2a2+a<0anditsclearthatz11>0(toelominatefromresidus)z∣=1φ(z)dz=2iπRes(φ,z2)=2iz2z12iπ=4π4a2+a=πa2+af(a)=πa2+acase2a(a+1)<01<a<0Δ,=4(a(a+1))=(2ia2a)2z1=2a+1+2ia2az2=2a+12ia2az1∣=(2a+1)2+4(a2a)=4a2+4a+14a24a=1z2∣=1z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}Res(φ,z1)=2iz1z2Res(φ,z2)=2iz2z1z∣=1φ(z)dz=0f(a)=0
Commented by math khazana by abdo last updated on 23/Jun/18
2) we have f^′ (a) = ∫_0 ^π   (∂/∂a)( (1/(a+sin^2 θ)))dθ  =−∫_0 ^π       (dθ/((a+sin^2 θ)^2 )) =−g(a) ⇒  g(a) =−f^′ (a)   if  a(a+1)<0 ⇒g(a)=0  if a(a+1)>0 f(a)= (π/( (√(a^2  +a)))) ⇒  f^′ (a) = π{(a^2 +a)^(−(1/2)) }^′  =−(π/2)(2a+1)(a^2  +a)^(−(3/2))   = ((−π(2a+1))/(2(a^2 +a)(√(a^2  +a)))) ⇒  g(a) = (((2a+1)π)/(2(a^2  +a)(√(a^2  +a)))) .
2)wehavef(a)=0πa(1a+sin2θ)dθ=0πdθ(a+sin2θ)2=g(a)g(a)=f(a)ifa(a+1)<0g(a)=0ifa(a+1)>0f(a)=πa2+af(a)=π{(a2+a)12}=π2(2a+1)(a2+a)32=π(2a+1)2(a2+a)a2+ag(a)=(2a+1)π2(a2+a)a2+a.
Commented by math khazana by abdo last updated on 23/Jun/18
3) we have proved that  f(a)=(π/( (√(a^2  +a)))) if a(a+1)>0  so ∫_0 ^π     (dθ/(1+sin^2 θ)) =f(1) = (π/( (√2)))  ∫_0 ^π     (dθ/(2+sin^2 θ)) = f(2)= (π/( (√6)))    (/)
3)wehaveprovedthatf(a)=πa2+aifa(a+1)>0so0πdθ1+sin2θ=f(1)=π20πdθ2+sin2θ=f(2)=π6
Commented by math khazana by abdo last updated on 23/Jun/18
4) ∫_0 ^π      (dθ/((3+sin^2 θ)^2 )) =g(3)= ((7π)/(24(√(12)))) =((7π)/(48(√3))) .
4)0πdθ(3+sin2θ)2=g(3)=7π2412=7π483.
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18
∫_0 ^Π (dθ/(a+sin^2 θ))  ∫((sec^2 θ)/(asec^2 θ+tan^2 θ))dθ  t=tanθ  dt=sec^2 θdθ  ∫(dt/(a+at^2 +t^2 ))  ∫(dt/(a+t^2 (1+a)))  (1/(1+a))∫(dt/((a/(1+a))+t^2 ))  (1/(1+a))×(1/(((√a) )/( (√(1+a)))))tan^(−1) ((t/((√a)/( (√(1+a))))))  =2∣(1/( (√a) ×(√(1+a)) ))×tan^(−1) (((tanθ)/(((√a) )/( (√(1+a)) ))))∣_0 ^(Π/2)    =2×(1/( (√a) ×(√(1+a))))×(Π/2)  =(Π/( (√(a+a^2 ))))  Ans      ∫_0 ^Π f(θ)dθ=2∫_0 ^(Π/2) f(θ)dθ  when f(Π−θ)=f(θ)
0Πdθa+sin2θsec2θasec2θ+tan2θdθt=tanθdt=sec2θdθdta+at2+t2dta+t2(1+a)11+adta1+a+t211+a×1a1+atan1(ta1+a)=21a×1+a×tan1(tanθa1+a)0Π2=2×1a×1+a×Π2=Πa+a2Ans0Πf(θ)dθ=20Π2f(θ)dθwhenf(Πθ)=f(θ)
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18
g(a)=∫_0 ^Π (dθ/((a+sin^2 θ)^2 ))  f(a)=∫_0 ^Π (dθ/(a+sin^2 θ))  ((df(a))/da)=∫_0 ^Π (∂/∂a)(1/((a+sin^2 θ)))dθ  =∫_0 ^Π ((−1)/((a+sin^2 θ)^2 ))dθ  so((df(a))/da)=−g(a)  g(a)=−(d/da)((Π/( (√(a+a^2 )) )))  g(a)=−Π×((−1)/(2(a+a^2 )^(3/2) ))×(1+2a)  g(a)=((Π(1+2a))/(2(a+a^2 )^(3/2) ))   ANS  i have proved ∫_0 ^Π (dθ/(a+sin^2 θ))=(Π/( (√(a+a^2 ))))
g(a)=0Πdθ(a+sin2θ)2f(a)=0Πdθa+sin2θdf(a)da=0Πa1(a+sin2θ)dθ=0Π1(a+sin2θ)2dθsodf(a)da=g(a)g(a)=dda(Πa+a2)g(a)=Π×12(a+a2)32×(1+2a)g(a)=Π(1+2a)2(a+a2)32ANSihaveproved0Πdθa+sin2θ=Πa+a2

Leave a Reply

Your email address will not be published. Required fields are marked *