Question Number 106948 by abdomathmax last updated on 08/Aug/20

Answered by Ar Brandon last updated on 08/Aug/20
![f(a)=∫_0 ^π (dx/(a+cos^2 x))=∫_0 ^π ((sec^2 x)/(asec^2 x+1))dx=∫_0 ^π ((d(tanx))/(a(1+tan^2 x)+1)) =∫_0 ^π ((d(tanx))/((a+1)+atan^2 x))=(1/a)∫_0 ^π ((d(tanx))/((((a+1)/a))+tan^2 x)) =(1/a)∙(√(a/(a+1)))[Arctan((√(a/(a+1)))∙tanx)]_0 ^π =(π/a)∙(√(a/(a+1)))=(π/( (√(a^2 +a))))](https://www.tinkutara.com/question/Q106955.png)
Answered by Ar Brandon last updated on 08/Aug/20

Answered by Ar Brandon last updated on 08/Aug/20
![f(1)=∫_0 ^π (dx/(1+cos^2 x))=(π/( (√(1^2 +1))))=(π/( (√2))) g(1)=∫_0 ^π (dx/((1+cos^2 x)^2 ))=∫_0 ^π ((sec^4 x)/((sec^2 x+1)^2 ))dx =∫_0 ^π ((1+tan^2 x)/((2+tan^2 x)^2 ))d(tanx)=∫_0 ^(−0) ((1+t^2 )/((2+t^2 )^2 ))dt =∫_0 ^(−0) ((2+t^2 )/((2+t^2 )^2 ))dt−∫_0 ^(−0) (1/((2+t^2 )^2 ))dt =_(t=(√2)tanθ) ∫_0 ^(−0) (dt/(2+t^2 ))−(1/4)∫_0 ^π (((√2)sec^2 θdθ)/((1+tan^2 θ)^2 )) =[(1/( (√2)))Arctan((t/( (√2))))]_0 ^(−0) −((√2)/4)∫_0 ^π (dθ/(sec^2 θ)) =(π/( (√2)))−((√2)/4)∙(1/2)∫_0 ^π (1+cos2θ)dθ=(π/( (√2)))−(1/(4(√2)))[θ+((sin2θ)/2)]_0 ^π =(π/( (√2)))−(π/(4(√2)))=((3π)/(4(√2)))](https://www.tinkutara.com/question/Q106961.png)
Commented by Ar Brandon last updated on 08/Aug/20
You're welcome, senior.��
Commented by abdomathmax last updated on 08/Aug/20

Answered by mathmax by abdo last updated on 08/Aug/20
