Menu Close

let-f-a-0-pi-x-1-acosx-dx-1-find-f-a-2-calculate-0-pi-x-1-2cosx-dx-and-0-pi-x-1-2cosx-dx-3-calculate-0-pi-xcosx-1-acosx-2-dx-4-find-the-value-of-0-




Question Number 41913 by math khazana by abdo last updated on 15/Aug/18
let f(a) = ∫_0 ^π     (x/(1+acosx))dx  1) find  f(a)   2) calculate  ∫_0 ^π    (x/(1+2cosx))dx and ∫_0 ^π    (x/(1−2cosx))dx  3) calculate  ∫_0 ^π   ((xcosx)/((1+acosx)^2 ))dx  4) find the value of  ∫_0 ^π    ((xcosx)/((1+2cosx)^2 ))dx .
letf(a)=0πx1+acosxdx1)findf(a)2)calculate0πx1+2cosxdxand0πx12cosxdx3)calculate0πxcosx(1+acosx)2dx4)findthevalueof0πxcosx(1+2cosx)2dx.
Answered by maxmathsup by imad last updated on 16/Aug/18
1) we have f(a) = ∫_0 ^π    (x/(1+a((2tan((x/2)))/(1+tan^2 ((x/2)))))) dx  changement tan((x/2)) =t give  f(a) =∫_0 ^∞    ((2arctan(t))/(1+((2at)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^∞    ((4arctan(t))/(1+t^2  +2at))dt =∫_0 ^∞    ((4arctan(t))/(t^2  +2at +1)) dt  =4 ∫_0 ^∞      ((arctan(t))/(t^2  +2at +1))dt =w(1) with w(α) =∫_0 ^∞     ((arctan(αt))/(t^2  +2at +1)) dt we have  w^′ (α) =∫_0 ^∞        (t/((1+α^2 t^2 )(t^2  +2at +1))) dt  =_(αt =u)   ∫_0 ^∞        (u/(α(1+u^2 )((u^2 /α^2 ) +2a(u/α)+1)))(du/α)  = ∫_0 ^∞         ((udu)/(α^2 (1+u^2 )(((u^2  +2αau +α^2 )/α^2 )))) =∫_0 ^∞      ((udu)/((u^2  +1)(u^2  +2αau +α^2 )))  let decompose F(u) = (u/((u^2  +1)(u^2  +2αau +α^2 ))) (let take α>0)  roots of  u^2  +2αau +α^2   Δ^′  =α^2 a^2  −α^2  =α^2 (a^2 −1)  case1) ∣a∣>1  ⇒ u_1 =−αa +∣α∣(√(a^2  −1))   and  u_2 =−αa −∣α∣(√(a^2  −1))  F(u) =  (a/(u−u_1 )) +(b/(u−u_2 ))  +((cu +d)/(u^2  +1))  =(u/((u−u_1 )(u−u_2 )(u^2  +1)))  a =  (u_1 /((u_1 −u_2 )(u_1 ^2  +1))) =((∣α∣(√(a^2 −1))−αa)/(2∣α∣(√(a^2 −1))((∣α∣(√(a^2 −1))−αa)^2 +1))) =((α((√(a^2 −1))−a))/(2α(√(a^2 −1))(α^2 ((√(a^2 −1))−a)^2 +1)))  =(((√(a^2 −1))−a)/(2(√(a^2 −1)){α^2 ((√(a^2 −1))−a)^2  +1}))  b = (u_2 /((u_2 −u_1 )(u_2 ^2  +1))) = ((−α(a+(√(a^2 −1))))/(−2α(√(a^2 −1)){ α^2 (a+(√(a^2 −1)))^2  +1}))  lim_(u→+∞) u F(u) =0 =a+b +c ⇒ c =−a−b ⇒  F(u) = (a/(u−u_1 )) +(b/(u−u_2 )) +(((−a−b)u +d)/(u^2  +1))  F(0) =0 =−(a/u_1 ) −(b/u_2 ) +d ⇒ d =(a/u_1 ) +(b/u_2 ) ⇒  F(u) = (a/(u−u_1 )) +(b/(u−u_2 )) +(((−a−b)u  +(a/u_1 )+(b/u_2 ))/(u^2  +1)) ⇒  ∫_0 ^∞   F(u)du  =[aln∣u−u_1 ∣ +bln∣u−u_2 ∣]_0 ^(+∞)   −[((a+b)/2)ln(u^2  +1)]_0 ^(+∞)   +((a/u_1 ) +(b/u_2 ))[ arctan(u)]_0 ^(+∞)   =[ ln(∣u−u_1 ∣^a ∣u−u_2 ∣^b )−ln((u^2  +1)^((a+b)/2) )]_0 ^(+∞)  +(π/2){(a/u_1 ) +(b/u_2 )}  ...be continued...
1)wehavef(a)=0πx1+a2tan(x2)1+tan2(x2)dxchangementtan(x2)=tgivef(a)=02arctan(t)1+2at1+t22dt1+t2=04arctan(t)1+t2+2atdt=04arctan(t)t2+2at+1dt=40arctan(t)t2+2at+1dt=w(1)withw(α)=0arctan(αt)t2+2at+1dtwehavew(α)=0t(1+α2t2)(t2+2at+1)dt=αt=u0uα(1+u2)(u2α2+2auα+1)duα=0uduα2(1+u2)(u2+2αau+α2α2)=0udu(u2+1)(u2+2αau+α2)letdecomposeF(u)=u(u2+1)(u2+2αau+α2)(lettakeα>0)rootsofu2+2αau+α2Δ=α2a2α2=α2(a21)case1)a∣>1u1=αa+αa21andu2=αaαa21F(u)=auu1+buu2+cu+du2+1=u(uu1)(uu2)(u2+1)a=u1(u1u2)(u12+1)=αa21αa2αa21((αa21αa)2+1)=α(a21a)2αa21(α2(a21a)2+1)=a21a2a21{α2(a21a)2+1}b=u2(u2u1)(u22+1)=α(a+a21)2αa21{α2(a+a21)2+1}limu+uF(u)=0=a+b+cc=abF(u)=auu1+buu2+(ab)u+du2+1F(0)=0=au1bu2+dd=au1+bu2F(u)=auu1+buu2+(ab)u+au1+bu2u2+10F(u)du=[alnuu1+blnuu2]0+[a+b2ln(u2+1)]0++(au1+bu2)[arctan(u)]0+=[ln(uu1auu2b)ln((u2+1)a+b2)]0++π2{au1+bu2}becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *