Menu Close

Let-f-a-continue-function-acknowleding-as-a-fix-point-on-0-1-F-a-function-such-as-dF-dx-f-x-n-u-n-1-F-u-n-F-u-n-Prove-that-lim-n-u-n-




Question Number 86326 by ~blr237~ last updated on 28/Mar/20
Let f a continue function acknowleding  α as a fix point on [0,1].F  a function such as (dF/dx)=f(x)  ∀ n ,  u_(n+1) =((F(u_n )−F(α))/(u_n −α))   Prove that lim_(n→∞)  u_n  =α
$${Let}\:{f}\:{a}\:{continue}\:{function}\:{acknowleding} \\ $$$$\alpha\:{as}\:{a}\:{fix}\:{point}\:{on}\:\left[\mathrm{0},\mathrm{1}\right].{F}\:\:{a}\:{function}\:{such}\:{as}\:\frac{{dF}}{{dx}}={f}\left({x}\right) \\ $$$$\forall\:{n}\:,\:\:{u}_{{n}+\mathrm{1}} =\frac{{F}\left({u}_{{n}} \right)−{F}\left(\alpha\right)}{{u}_{{n}} −\alpha}\: \\ $$$${Prove}\:{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=\alpha \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *