Menu Close

let-f-a-cos-x-2-ax-1-dx-1-calculate-f-a-and-f-a-2-find-f-n-a-




Question Number 49232 by Abdo msup. last updated on 04/Dec/18
let f(a)= ∫_(−∞) ^(+∞) cos(x^2  +ax +1)dx  1)calculate f(a) and f^′ (a)  2) find  f^((n)) (a)
letf(a)=+cos(x2+ax+1)dx1)calculatef(a)andf(a)2)findf(n)(a)
Commented by Abdo msup. last updated on 06/Dec/18
letg(a)=∫_(−∞) ^(+∞)  sin(x^2  +ax+1)dx we hsve  f(a)−ig(a) =∫_(−∞) ^(+∞)  e^(−i(x^2 +ax+1)) dx  =∫_(−∞) ^(+∞)   e^(−i(x^(2 )  +2(a/2)x +(a^2 /4) +1−(a^2 /4))) dx  =e^(−i(1−(a^2 /4)))  ∫_(−∞) ^(+∞)   e^(−((√i)(x+(a/2)))^2 ) dx  =_((√i)(x+(a/2)) =u)     e^(−i(1−(a^2 /4)))  ∫_(−∞) ^(+∞)   e^(−u^2 ) (du/( (√i)))  =(√π)  e^(−i(1−(a^2 /4)))  e^(−((iπ)/4))  =(√π) e^(−i(1+(π/4)−(a^2 /2)))   (√π){cos(1+(π/4)−(a^2 /4))−isin(1+(π/4)−(a^2 /4))} ⇒  f(a) =(√π)cos(1+(π/4)−(a^2 /4)) also wehave  g(a) =(√π)sin(1+(π/4) −(a^2 /4)).
letg(a)=+sin(x2+ax+1)dxwehsvef(a)ig(a)=+ei(x2+ax+1)dx=+ei(x2+2a2x+a24+1a24)dx=ei(1a24)+e(i(x+a2))2dx=i(x+a2)=uei(1a24)+eu2dui=πei(1a24)eiπ4=πei(1+π4a22)π{cos(1+π4a24)isin(1+π4a24)}f(a)=πcos(1+π4a24)alsowehaveg(a)=πsin(1+π4a24).
Commented by Abdo msup. last updated on 06/Dec/18
f^′ (a) =−(√π)(−(a/2))sin(1+(π/4) −(a^2 /4))  =((a(√π))/2) sin(1+(π/4)−(a^2 /4)) .
f(a)=π(a2)sin(1+π4a24)=aπ2sin(1+π4a24).

Leave a Reply

Your email address will not be published. Required fields are marked *