Menu Close

let-f-a-dx-a-2-x-2-3-with-a-gt-0-1-calculate-f-a-2-calculste-also-g-a-dx-a-2-x-2-4-3-find-the-values-of-integrals-0-dx-x-2-1-3




Question Number 63782 by mathmax by abdo last updated on 09/Jul/19
let f(a) =∫_(−∞) ^(+∞)    (dx/((a^2 +x^2 )^3 ))   with a>0  1) calculate f(a)  2)calculste also g(a) =∫_(−∞) ^(+∞)    (dx/((a^2  +x^2 )^4 ))  3) find the values of integrals  ∫_0 ^∞   (dx/((x^2  +1)^3 ))  ∫_0 ^∞  (dx/((x^2 +2)^4 ))
letf(a)=+dx(a2+x2)3witha>01)calculatef(a)2)calculstealsog(a)=+dx(a2+x2)43)findthevaluesofintegrals0dx(x2+1)30dx(x2+2)4
Commented by mathmax by abdo last updated on 09/Jul/19
1) let  h(a) =∫_(−∞) ^(+∞)   (dx/((a^2  +x^2 )^2 ))  we have h^′ (a) =−∫_(−∞) ^(+∞)  ((2(2a)(a^2 +x^2 ))/((a^2  +x^2 )^4 ))  =−∫_(−∞) ^(+∞)  ((4a)/((a^2  +x^2 )^3 ))dx =−4a f(a) ⇒f(a)=−(1/(4a))h^′ (a) let find h(a)  we have h(a) =_(x=at)     ∫_(−∞) ^(+∞)   ((adt)/(a^4 (1+t^2 )^2 )) =(1/a^3 ) ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^2 ))  let w(z) =(1/((z^2 +1)^2 )) ⇒f(z) =(1/((z−i)^2 (z+i)^2 )) residus theorem give  ∫_(−∞) ^(+∞)  w(z)dz =2iπ Res(w,i)  Res(w,i) =lim_(z→i)     (1/((2−1)!)){(z−i)^2 w(z)}^((1))   =lim_(z→i)  {(z+i)^(−2) }^((1))  =lim_(z→i)   −2(z+i)^(−3) =((−2)/((2i)^3 )) =((−2)/(−8i)) =(1/(4i)) ⇒  ∫_(−∞) ^(+∞)  w(z)dz =2iπ(1/(4i)) =(π/2) ⇒h(a) =(π/(2a^3 )) ⇒  h^′ (a)=(π/2) ((−3a^2 )/a^6 ) =((−3π)/(2a^4 )) ⇒f(a) =−(1/(4a))(((−3π)/(2a^4 ))) =((3π)/(8a^5 ))  ★f(a) =((3π)/(8a^5 )) ★
1)leth(a)=+dx(a2+x2)2wehaveh(a)=+2(2a)(a2+x2)(a2+x2)4=+4a(a2+x2)3dx=4af(a)f(a)=14ah(a)letfindh(a)wehaveh(a)=x=at+adta4(1+t2)2=1a3+dt(t2+1)2letw(z)=1(z2+1)2f(z)=1(zi)2(z+i)2residustheoremgive+w(z)dz=2iπRes(w,i)Res(w,i)=limzi1(21)!{(zi)2w(z)}(1)=limzi{(z+i)2}(1)=limzi2(z+i)3=2(2i)3=28i=14i+w(z)dz=2iπ14i=π2h(a)=π2a3h(a)=π23a2a6=3π2a4f(a)=14a(3π2a4)=3π8a5f(a)=3π8a5
Commented by mathmax by abdo last updated on 09/Jul/19
2) we have by derivation f^′ (a) =−∫_(−∞) ^(+∞)  ((3(2a)(a^2  +x^2 )^2 )/((a^2  +x^2 )^6 ))dx  =−6a ∫_(−∞) ^(+∞)    (dx/((a^2  +x^2 )^4 )) =−6a g(a) ⇒g(a) =−(1/(6a))f^′ (a)  but f(a) =((3π)/(8a^5 )) ⇒f^′ (a) =((3π)/8)(−((5a^4 )/a^(10) )) =−((15π)/(8 a^6 )) ⇒  g(a) =−(1/(6a))(−((15π)/(8a^6 ))) =((15π)/(48 a^7 ))
2)wehavebyderivationf(a)=+3(2a)(a2+x2)2(a2+x2)6dx=6a+dx(a2+x2)4=6ag(a)g(a)=16af(a)butf(a)=3π8a5f(a)=3π8(5a4a10)=15π8a6g(a)=16a(15π8a6)=15π48a7
Commented by mathmax by abdo last updated on 09/Jul/19
⇒g(a) =((3.5π)/(3.16a^7 )) ⇒g(a) =((5π)/(16a^7 )) .
g(a)=3.5π3.16a7g(a)=5π16a7.
Commented by mathmax by abdo last updated on 09/Jul/19
3) we have proved that ∫_(−∞) ^(+∞)   (dx/((a^2  +x^2 )^3 )) =((3π)/(8a^5 ))  a=1 ⇒∫_(−∞) ^(+∞)   (dx/((x^2  +1)^3 )) =((3π)/8) ⇒2 ∫_0 ^∞     (dx/((x^2  +1)^3 )) =((3π)/8) ⇒  ∫_0 ^∞   (dx/((x^2  +1)^3 )) =((3π)/(16)) . also we have proved that  ∫_(−∞) ^(+∞)    (dx/((x^2  +a^2 )^4 )) =((5π)/(16a^7 ))  a=(√2) ⇒∫_(−∞) ^(+∞)   (dx/((x^2  +2)^4 )) =((5π)/(16 ((√2))^7 )) ⇒∫_0 ^∞    (dx/((x^2  +2)^4 )) =((5π)/(32((√2))^7 )) .
3)wehaveprovedthat+dx(a2+x2)3=3π8a5a=1+dx(x2+1)3=3π820dx(x2+1)3=3π80dx(x2+1)3=3π16.alsowehaveprovedthat+dx(x2+a2)4=5π16a7a=2+dx(x2+2)4=5π16(2)70dx(x2+2)4=5π32(2)7.
Answered by MJS last updated on 09/Jul/19
reduction formula  ∫(dx/((px^2 +q)^n ))=(x/(2q(n−1)(px^2 +q)^(n−1) ))+((2n−3)/(2q(n−1)))∫(dx/((px^2 +q)^(n−1) ))  ∫(dx/((x^2 +a^2 )^3 ))=  p=1; q=a^2 ; n=3  =(x/(4a^2 (x^2 +a^2 )^2 ))+(3/(4a^2 ))∫(dx/((x^2 +a^2 )^2 ))=  p=1; q=a^2 ; n=2  =(x/(4a^2 (x^2 +a^2 )^2 ))+(3/(4a^2 ))×(x/(2a^2 (x^2 +a^2 )))+(3/(4a^2 ))×(1/(2a^2 ))∫(dx/(x^2 +a^2 ))=  =(x/(4a^2 (x^2 +a^2 )^2 ))+((3x)/(8a^4 (x^2 +a^2 )))+(3/(8a^4 ))×(1/a)arctan (x/a) =  =((x(3x^2 +5a^2 ))/(8a^4 (x^2 +a^2 )^2 ))+(3/(8a^5 ))arctan (x/a) +C  f(a)=∫_(−∞) ^(+∞) (dx/((x^2 +a^2 )^3 ))=((3π)/(8a^5 ))  for g(a) we go the same path  ∫(dx/((x^2 +a^2 )^4 ))=((x(15x^4 +40a^2 x^2 +33a^4 ))/(48a^6 (x^2 +a^2 )^3 ))+(5/(16a^7 ))arctan (x/2) +C  g(a)=∫_(−∞) ^(+∞) (dx/((x^2 +a^2 )^4 ))=((5π)/(16a^7 ))
reductionformuladx(px2+q)n=x2q(n1)(px2+q)n1+2n32q(n1)dx(px2+q)n1dx(x2+a2)3=p=1;q=a2;n=3=x4a2(x2+a2)2+34a2dx(x2+a2)2=p=1;q=a2;n=2=x4a2(x2+a2)2+34a2×x2a2(x2+a2)+34a2×12a2dxx2+a2==x4a2(x2+a2)2+3x8a4(x2+a2)+38a4×1aarctanxa==x(3x2+5a2)8a4(x2+a2)2+38a5arctanxa+Cf(a)=+dx(x2+a2)3=3π8a5forg(a)wegothesamepathdx(x2+a2)4=x(15x4+40a2x2+33a4)48a6(x2+a2)3+516a7arctanx2+Cg(a)=+dx(x2+a2)4=5π16a7
Commented by turbo msup by abdo last updated on 09/Jul/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *