Menu Close

Let-f-be-a-real-valued-function-defined-on-the-inte-rval-1-1-If-the-area-of-the-equilateral-triangle-with-0-0-and-x-f-x-as-two-vertices-is-3-4-then-f-x-is-equal-to-A-1-x-2-




Question Number 119807 by Ar Brandon last updated on 27/Oct/20
Let f be a real-valued function defined on the inte-  rval [−1, 1]. If the area of the equilateral triangle with  (0, 0) and (x, f(x)) as two vertices is (√3)/4, then f(x)  is equal to  (A) (√(1−x^2 ))                                 (B) (√(1+x^2 ))  (C) −(√(1−x^2 ))                              (D) −(√(1+x^2 ))
Letfbearealvaluedfunctiondefinedontheinterval[1,1].Iftheareaoftheequilateraltrianglewith(0,0)and(x,f(x))astwoverticesis3/4,thenf(x)isequalto(A)1x2(B)1+x2(C)1x2(D)1+x2
Answered by TANMAY PANACEA last updated on 28/Oct/20
side of equilatera [triangle=a=(√(x^2 +f^2 (x)))   ((√3)/4)×a^2  =((√3)/4)  a^2 =1  x^2 +f^2 (x)=1  f(x)=(√(1−x^2 ))
sideofequilatera[triangle=a=x2+f2(x)34×a2=34a2=1x2+f2(x)=1f(x)=1x2
Commented by Ar Brandon last updated on 28/Oct/20
Thank you Sir
Commented by Ar Brandon last updated on 28/Oct/20
Thanks Sir
Commented by Ar Brandon last updated on 03/Nov/20
Sir how come ((√3)/4)×a^2  ? Is it by using  (1/2)a×a sin60° ? 60° being the angle  between two adjacent sides.
Sirhowcome34×a2?Isitbyusing12a×asin60°?60°beingtheanglebetweentwoadjacentsides.
Commented by TANMAY PANACEA last updated on 28/Oct/20
area=(√(s(s−a)(s−b)(s−c)))   here a=b=c  s=((a+b+c)/2)=((a+a+a)/2)=((3a)/2)  (s−a)=((3a)/2)−a=(a/2)  area=(√(((3a)/2)×(a/2)×(a/2)×(a/2))) =((√3)/4)a^2
area=s(sa)(sb)(sc)herea=b=cs=a+b+c2=a+a+a2=3a2(sa)=3a2a=a2area=3a2×a2×a2×a2=34a2
Commented by TANMAY PANACEA last updated on 28/Oct/20
or mdthod area=(1/2)×a×h  sin60^o  =(h/a)→h=((√3)/2)a  area=((√3)/2)×a×(1/2)×a=((√3)/4)a^2
ormdthodarea=12×a×hsin60o=hah=32aarea=32×a×12×a=34a2
Commented by TANMAY PANACEA last updated on 28/Oct/20
yes sir
yessir

Leave a Reply

Your email address will not be published. Required fields are marked *