Menu Close

Let-f-be-a-real-valued-function-defined-on-the-interval-1-1-such-that-e-x-f-x-2-0-x-t-4-1-dt-x-1-1-and-let-g-be-the-inverse-function-of-f-Find-the-value-of-g-2-




Question Number 115260 by bobhans last updated on 24/Sep/20
Let f be a real valued function defined  on the interval (−1,1) such that   e^(−x) .f(x)=2+∫_0 ^x  (√(t^4 +1)) dt ∀x∈(−1,1)  and let g be the inverse function of f  . Find the value of g′(2).
Letfbearealvaluedfunctiondefinedontheinterval(1,1)suchthatex.f(x)=2+x0t4+1dtx(1,1)andletgbetheinversefunctionoff.Findthevalueofg(2).
Commented by PRITHWISH SEN 2 last updated on 24/Sep/20
Answered by john santu last updated on 24/Sep/20
Differentiating given equation we  get e^(−x) .f ′(x)−e^(−x) .f(x)=(√(1+x^4 ))  since (g○f)(x)=x as g is inverse of f  ⇒ g(f(x))=x⇒f ′(x).g ′(f(x))=1  ⇒g ′(f(0))=(1/(f ′(0)))⇒g ′(2)=(1/(f ′(0)))  ( here f(0)=2 obtained from  given equation.)  put x=0 we get f ′(0)=3.  ∴ g ′(2)=(1/3)
Differentiatinggivenequationwegetex.f(x)ex.f(x)=1+x4since(gf)(x)=xasgisinverseoffg(f(x))=xf(x).g(f(x))=1g(f(0))=1f(0)g(2)=1f(0)(heref(0)=2obtainedfromgivenequation.)putx=0wegetf(0)=3.g(2)=13
Answered by mindispower last updated on 25/Sep/20
g′(f(x))=(1/(f′(x))),f′(x)=e^x (2+∫_0 ^x (√(1+t^4 )))+(√(x^4 +1))e^x )  g′(f(0))=(1/(f′(0)))=g′(2)=(1/3)
g(f(x))=1f(x),f(x)=ex(2+0x1+t4)+x4+1ex)g(f(0))=1f(0)=g(2)=13

Leave a Reply

Your email address will not be published. Required fields are marked *