Question Number 62679 by ajfour last updated on 24/Jun/19
$${Let}\:{f}\:{be}\:{defined}\:{in}\:{the}\:{neighborhood} \\ $$$${of}\:{x}\:{and}\:{that}\:{f}\:''\left({x}\right)\:{exists}. \\ $$$${Prove}\:{that}\:\: \\ $$$$\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+{h}\right)+{f}\left({x}−{h}\right)−\mathrm{2}{f}\left({x}\right)}{{h}^{\mathrm{2}} }={f}\:''\left({x}\right)\:. \\ $$
Commented by kaivan.ahmadi last updated on 24/Jun/19
$${hi}\:{sir},\:{check}\:{the}\:{quoestion}\:{please} \\ $$
Commented by ajfour last updated on 24/Jun/19
$${Its}\:{correct},\:{Sir}. \\ $$
Commented by MJS last updated on 24/Jun/19
$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:{h}\rightarrow\mathrm{0}? \\ $$
Commented by kaivan.ahmadi last updated on 24/Jun/19
$${if}\:\:{h}\rightarrow\mathrm{0} \\ $$$$\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\overset{{Hop}} {=}\:{lim}_{{h}\rightarrow\mathrm{0}\:} \:\frac{{f}'\left({x}+{h}\right)−{f}'\left({x}−{h}\right)}{\mathrm{2}{h}}\:\overset{{Hop}} {=} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{{f}''\left({x}+{h}\right)+{f}''\left({x}−{h}\right)}{\mathrm{2}}=\frac{\mathrm{2}{f}''\left({x}\right)}{\mathrm{2}}={f}''\left({x}\right) \\ $$$${this}\:{way}\:{is}\:{true} \\ $$$${i}\:{had}\:{a}\:{mistake}\:{in}\:{previous}\:{solution} \\ $$$$ \\ $$$$\left(\frac{{d}}{{dh}}\left(\mathrm{2}{f}\left({x}\right)\right)=\mathrm{0}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Mr X pcx last updated on 24/Jun/19
$${hospital}\:{theorem}\:{let} \\ $$$${u}\left({h}\right)={f}\left({x}+{h}\right)+{f}\left({x}+{h}\right)−\mathrm{2}{f}\left({x}\right) \\ $$$${v}\left({h}\right)\:={h}^{\mathrm{2}} \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} {u}\left({h}\right)={lim}_{{h}\rightarrow\mathrm{0}} {v}\left({h}\right)=\mathrm{0} \\ $$$${u}^{'} \left({h}\right)\:={f}^{'} \left({x}+{h}\right)+{f}^{'} \left({x}+{h}\right)\int\rightarrow\mathrm{2}{f}^{'} \left({x}\right) \\ $$$${u}^{''} \left({h}\right)\:={f}^{''} \left({x}+{h}\right)+{f}^{''} \left({x}+{h}\right)\rightarrow\mathrm{2}{f}^{''} \left({x}\right) \\ $$$${v}^{'} \left({h}\right)=\mathrm{2}{h}\:\rightarrow\mathrm{0} \\ $$$${v}^{''} \left({h}\right)\:=\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{{f}\left({x}+{h}\right)+{f}\left({x}+{h}\right)−\mathrm{2}{f}\left({x}\right)}{{h}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}{f}^{''} \left({x}\right)}{\mathrm{2}}\:={f}^{''} \left({x}\right)\:. \\ $$
Answered by mr W last updated on 24/Jun/19
$${f}''\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\:'\left({x}+\frac{{h}}{\mathrm{2}}\right)−{f}\:'\left({x}−\frac{{h}}{\mathrm{2}}\right)}{{h}} \\ $$$${f}''\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}}−\frac{{f}\left({x}\right)−{f}\left({x}−{h}\right)}{{h}}}{{h}} \\ $$$${f}''\left({x}\right)=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+{h}\right)+{f}\left({x}−{h}\right)−\mathrm{2}{f}\left({x}\right)}{{h}^{\mathrm{2}} } \\ $$
Commented by ajfour last updated on 24/Jun/19
$${Thanks}\:{Sir},\:{nice}\:{way}! \\ $$