Menu Close

Let-f-be-defined-in-the-neighborhood-of-x-and-that-f-x-exists-Prove-that-lim-h-0-f-x-h-f-x-h-2f-x-h-2-f-x-




Question Number 62679 by ajfour last updated on 24/Jun/19
Let f be defined in the neighborhood  of x and that f ′′(x) exists.  Prove that     lim_(h→0) ((f(x+h)+f(x−h)−2f(x))/h^2 )=f ′′(x) .
Letfbedefinedintheneighborhoodofxandthatf(x)exists.Provethatlimh0f(x+h)+f(xh)2f(x)h2=f(x).
Commented by kaivan.ahmadi last updated on 24/Jun/19
hi sir, check the quoestion please
hisir,checkthequoestionplease
Commented by ajfour last updated on 24/Jun/19
Its correct, Sir.
Itscorrect,Sir.
Commented by MJS last updated on 24/Jun/19
I think it should be h→0?
Ithinkitshouldbeh0?
Commented by kaivan.ahmadi last updated on 24/Jun/19
if  h→0  (0/0)  =^(Hop)  lim_(h→0 )  ((f′(x+h)−f′(x−h))/(2h)) =^(Hop)   lim_(h→0)   ((f′′(x+h)+f′′(x−h))/2)=((2f′′(x))/2)=f′′(x)  this way is true  i had a mistake in previous solution    ((d/dh)(2f(x))=0)
ifh000=Hoplimh0f(x+h)f(xh)2h=Hoplimh0f(x+h)+f(xh)2=2f(x)2=f(x)thiswayistrueihadamistakeinprevioussolution(ddh(2f(x))=0)
Commented by Mr X pcx last updated on 24/Jun/19
hospital theorem let  u(h)=f(x+h)+f(x+h)−2f(x)  v(h) =h^2   lim_(h→0) u(h)=lim_(h→0) v(h)=0  u^′ (h) =f^′ (x+h)+f^′ (x+h)∫→2f^′ (x)  u^(′′) (h) =f^(′′) (x+h)+f^(′′) (x+h)→2f^(′′) (x)  v^′ (h)=2h →0  v^(′′) (h) =2 ⇒  lim_(h→0)   ((f(x+h)+f(x+h)−2f(x))/h^2 )  =((2f^(′′) (x))/2) =f^(′′) (x) .
hospitaltheoremletu(h)=f(x+h)+f(x+h)2f(x)v(h)=h2limh0u(h)=limh0v(h)=0u(h)=f(x+h)+f(x+h)2f(x)u(h)=f(x+h)+f(x+h)2f(x)v(h)=2h0v(h)=2limh0f(x+h)+f(x+h)2f(x)h2=2f(x)2=f(x).
Answered by mr W last updated on 24/Jun/19
f′′(x)=lim_(h→0) ((f ′(x+(h/2))−f ′(x−(h/2)))/h)  f′′(x)=lim_(h→0) ((((f(x+h)−f(x))/h)−((f(x)−f(x−h))/h))/h)  f′′(x)=lim_(h→0) ((f(x+h)+f(x−h)−2f(x))/h^2 )
f(x)=limh0f(x+h2)f(xh2)hf(x)=limh0f(x+h)f(x)hf(x)f(xh)hhf(x)=limh0f(x+h)+f(xh)2f(x)h2
Commented by ajfour last updated on 24/Jun/19
Thanks Sir, nice way!
ThanksSir,niceway!

Leave a Reply

Your email address will not be published. Required fields are marked *