Menu Close

let-f-C-0-0-pi-R-prove-that-lim-n-0-pi-f-x-sin-nx-dx-2-pi-0-pi-f-x-dx-




Question Number 36932 by maxmathsup by imad last updated on 07/Jun/18
let f ∈ C^0 ([0,π],R)  prove that  lim_(n→+∞)  ∫_0 ^π f(x) ∣sin(nx)∣dx =(2/π) ∫_0 ^π f(x)dx .
$${let}\:{f}\:\in\:{C}^{\mathrm{0}} \left(\left[\mathrm{0},\pi\right],{R}\right)\:\:{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right)\:\mid{sin}\left({nx}\right)\mid{dx}\:=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *