Menu Close

let-f-C-0-R-R-x-R-f-a-b-x-f-x-1-find-a-b-xf-x-dx-interms-of-a-b-f-x-dx-2-calculate-0-pi-xdx-1-sinx-




Question Number 50413 by Abdo msup. last updated on 16/Dec/18
let f ∈C^0 (R,R) / ∀ x∈R  f(a+b−x)=f(x)  1) find ∫_a ^b xf(x)dx interms of ∫_a ^b f(x)dx  2) calculate ∫_0 ^π   ((xdx)/(1+sinx))
letfC0(R,R)/xRf(a+bx)=f(x)1)findabxf(x)dxintermsofabf(x)dx2)calculate0πxdx1+sinx
Commented by Abdo msup. last updated on 24/Dec/18
1)∫_a ^b xf(x)dx =∫_a ^b xf(a+b−x)dx   =_(a+b−x=t )     −∫_b ^a  (a+b−t)f(t)dt  =∫_a ^b (a+b)f(t) −∫_a ^b tf(t)dt ⇒  2 ∫_a ^b  xf(x)dx =(a+b)∫_a ^b  f(t)dt ⇒  ∫_a ^b  xf(x)dx =((a+b)/2) ∫_a ^b  f(x)dx  2) we have ∫_0 ^π  ((xdx)/(1+sinx)) =∫_0 ^π  xf(x)dx with  f(x)=(1/(1+sinx))  we have f(0+π−x)=(1/(1+sin(π−x)))  =f(x) ⇒∫_0 ^π  xf(x)dx =(π/2) ∫_0 ^π   (dx/(1+sinx))  =_(tan((x/2))=t)   (π/2) ∫_0 ^∞   (1/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  =π ∫_0 ^∞    (dt/(1+t^2  +2t)) =π ∫_0 ^∞   (dt/((t+1)^2 ))  =π [−(1/(t+1))]_0 ^(+∞)  = π  .
1)abxf(x)dx=abxf(a+bx)dx=a+bx=tba(a+bt)f(t)dt=ab(a+b)f(t)abtf(t)dt2abxf(x)dx=(a+b)abf(t)dtabxf(x)dx=a+b2abf(x)dx2)wehave0πxdx1+sinx=0πxf(x)dxwithf(x)=11+sinxwehavef(0+πx)=11+sin(πx)=f(x)0πxf(x)dx=π20πdx1+sinx=tan(x2)=tπ2011+2t1+t22dt1+t2=π0dt1+t2+2t=π0dt(t+1)2=π[1t+1]0+=π.

Leave a Reply

Your email address will not be published. Required fields are marked *