Menu Close

Let-f-D-f-R-n-R-m-let-a-be-an-interior-point-of-Dom-f-and-let-u-be-any-vector-in-R-n-when-is-a-vector-v-R-m-called-the-directional-derivative-of-f-at-a-along-the-line-determine-by-u-he




Question Number 192397 by Mastermind last updated on 16/May/23
Let f:D(f)⊆R^n →R^m   let ′a′ be an interior point of Dom(f)  and let ′u′ be any vector in R^n , when  is a vector v∈R^m  called the directional  derivative of f at ′a′ along the line  determine by u ?    help!
Letf:D(f)RnRmletabeaninteriorpointofDom(f)andletubeanyvectorinRn,whenisavectorvRmcalledthedirectionalderivativeoffataalongthelinedeterminebyu?help!
Answered by aleks041103 last updated on 21/May/23
let f_i :D(f)⊆R^n →R be the component  functions of f, i.e.  f(a)=(f_1 (a),f_2 (a),...,f_m (a))∈R^m   ⇒in this case:  v=((∂f_1 /∂u)(a),(∂f_2 /∂u)(a),...,(∂f_m /∂u)(a))∈R^m   where (∂/∂u) is the ordinary directional  derivtive, i.e. (∂/∂u)=u∙grad=u∙▽  ⇒v=((u∙grad(f_1 ))(a),(u∙grad(f_2 ))(a),...,(u∙grad(f_m ))(a))∈R^m   in index notation:  v_k =Σ_(s=1) ^n u_s (∂f_k /∂x_s )(a)  or using einstein notation  v_k =u_s ∂_s f_k (a)  or in vector notation  v=((u∙▽)f)(a)
letfi:D(f)RnRbethecomponentfunctionsoff,i.e.f(a)=(f1(a),f2(a),,fm(a))Rminthiscase:v=(f1u(a),f2u(a),,fmu(a))Rmwhereuistheordinarydirectionalderivtive,i.e.u=ugrad=uv=((ugrad(f1))(a),(ugrad(f2))(a),,(ugrad(fm))(a))Rminindexnotation:vk=ns=1usfkxs(a)orusingeinsteinnotationvk=ussfk(a)orinvectornotationv=((u)f)(a)

Leave a Reply

Your email address will not be published. Required fields are marked *