Question Number 192397 by Mastermind last updated on 16/May/23
$$\mathrm{Let}\:\mathrm{f}:\mathrm{D}\left(\mathrm{f}\right)\subseteq\mathbb{R}^{\mathrm{n}} \rightarrow\mathbb{R}^{\mathrm{m}} \\ $$$$\mathrm{let}\:'\mathrm{a}'\:\mathrm{be}\:\mathrm{an}\:\mathrm{interior}\:\mathrm{point}\:\mathrm{of}\:\mathrm{Dom}\left(\mathrm{f}\right) \\ $$$$\mathrm{and}\:\mathrm{let}\:'\mathrm{u}'\:\mathrm{be}\:\mathrm{any}\:\mathrm{vector}\:\mathrm{in}\:\mathbb{R}^{\mathrm{n}} ,\:\mathrm{when} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{v}\in\mathbb{R}^{\mathrm{m}} \:\mathrm{called}\:\mathrm{the}\:\mathrm{directional} \\ $$$$\mathrm{derivative}\:\mathrm{of}\:\mathrm{f}\:\mathrm{at}\:'\mathrm{a}'\:\mathrm{along}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{determine}\:\mathrm{by}\:\mathrm{u}\:? \\ $$$$ \\ $$$$\mathrm{help}! \\ $$
Answered by aleks041103 last updated on 21/May/23
$${let}\:{f}_{{i}} :{D}\left({f}\right)\subseteq\mathbb{R}^{{n}} \rightarrow\mathbb{R}\:{be}\:{the}\:{component} \\ $$$${functions}\:{of}\:{f},\:{i}.{e}. \\ $$$${f}\left({a}\right)=\left({f}_{\mathrm{1}} \left({a}\right),{f}_{\mathrm{2}} \left({a}\right),…,{f}_{{m}} \left({a}\right)\right)\in\mathbb{R}^{{m}} \\ $$$$\Rightarrow{in}\:{this}\:{case}: \\ $$$${v}=\left(\frac{\partial{f}_{\mathrm{1}} }{\partial{u}}\left({a}\right),\frac{\partial{f}_{\mathrm{2}} }{\partial{u}}\left({a}\right),…,\frac{\partial{f}_{{m}} }{\partial{u}}\left({a}\right)\right)\in\mathbb{R}^{{m}} \\ $$$${where}\:\frac{\partial}{\partial{u}}\:{is}\:{the}\:{ordinary}\:{directional} \\ $$$${derivtive},\:{i}.{e}.\:\frac{\partial}{\partial{u}}={u}\centerdot{grad}={u}\centerdot\bigtriangledown \\ $$$$\Rightarrow{v}=\left(\left({u}\centerdot{grad}\left({f}_{\mathrm{1}} \right)\right)\left({a}\right),\left({u}\centerdot{grad}\left({f}_{\mathrm{2}} \right)\right)\left({a}\right),…,\left({u}\centerdot{grad}\left({f}_{{m}} \right)\right)\left({a}\right)\right)\in\mathbb{R}^{{m}} \\ $$$${in}\:{index}\:{notation}: \\ $$$${v}_{{k}} =\underset{{s}=\mathrm{1}} {\overset{{n}} {\sum}}{u}_{{s}} \frac{\partial{f}_{{k}} }{\partial{x}_{{s}} }\left({a}\right) \\ $$$${or}\:{using}\:{einstein}\:{notation} \\ $$$${v}_{{k}} ={u}_{{s}} \partial_{{s}} {f}_{{k}} \left({a}\right) \\ $$$${or}\:{in}\:{vector}\:{notation} \\ $$$${v}=\left(\left({u}\centerdot\bigtriangledown\right){f}\right)\left({a}\right) \\ $$