Menu Close

Let-f-D-R-be-defined-as-f-x-x-2-2x-a-x-2-4x-3a-where-D-and-R-denote-the-domain-of-f-and-the-set-of-all-real-numbers-respectively-If-f-is-surjective-mapping-then-the-range-of-a-is




Question Number 33815 by rahul 19 last updated on 25/Apr/18
Let f:D → R be defined as   f(x) = ((x^2 +2x+a)/(x^2 +4x+3a)) where D and R  denote the domain of f and the set  of all real numbers respectively.  If f is ′′ surjective ′′  mapping then  the range of a is ?  a) 0≤a≤1  b) 0<a≤1  c) 0<a<1  d) 0≤a<1
Letf:DRbedefinedasf(x)=x2+2x+ax2+4x+3awhereDandRdenotethedomainoffandthesetofallrealnumbersrespectively.Iffissurjectivemappingthentherangeofais?a)0a1b)0<a1c)0<a<1d)0a<1
Answered by MJS last updated on 26/Apr/18
a=0 ⇒ f(x)=((x(x+2))/(x(x+4)))=((x+2)/(x+4))∧x≠0 ⇒  ⇒ f(x)≠(1/2) ⇒ not surjective    a=1 ⇒ f(x)=(((x+1)^2 )/((x+1)(x+3)))=((x+1)/(x+3))∧x≠−1 ⇒  ⇒ f(x)≠0 ⇒ not surjective    let′s try something in between  a=(1/2) ⇒ f(x)=((2x^2 +4x+1)/(2x^2 +8x+3))  lim_(x→±∞)  f(x)=1  the question is, ∃x∈R∣f(x)=1?  ((2x^2 +4x+1)/(2x^2 +8x+3))=1 ⇒ x=−(1/2)=−a (?)  ((x^2 +2x+a)/(x^2 +4x+3a))=1 ⇒ x=−a  so answer c should be right
a=0f(x)=x(x+2)x(x+4)=x+2x+4x0f(x)12notsurjectivea=1f(x)=(x+1)2(x+1)(x+3)=x+1x+3x1f(x)0notsurjectiveletstrysomethinginbetweena=12f(x)=2x2+4x+12x2+8x+3limx±f(x)=1thequestionis,xRf(x)=1?2x2+4x+12x2+8x+3=1x=12=a(?)x2+2x+ax2+4x+3a=1x=asoanswercshouldberight
Commented by rahul 19 last updated on 28/Apr/18
so you took one value between 0&1.  what if i take (1/4) , (1/3),etc.   and also tell how for any value of  0<a<1 the range is R ?
soyoutookonevaluebetween0&1.whatifitake14,13,etc.andalsotellhowforanyvalueof0<a<1therangeisR?
Commented by MJS last updated on 28/Apr/18
good point    ((x^2 +2x+a)/(x^2 +4x+3a))=(((x+1+(√(1−a)))(x+1−(√(1−a))))/((x+2+(√(4−3a)))(x+2−(√(4−3a)))))  the same problem as with a=0 ∨ a=1 would  occur only if we can shorten this fraction.  in this case:  x+1+(√(1−a))=x+2+(√(4−3a)) ∨  x+1+(√(1−a))=x+2−(√(4−3a)) ∨  x+1−(√(1−a))=x+2+(√(4−3a)) ∨  x+1−(√(1−a))=x+2+(√(4−3a))  ⇒ a=0 ∨ a=1  ⇒ ∀a∈]0; 1[: ((x^2 +2x+a)/(x^2 +4x+3a))∈R
goodpointx2+2x+ax2+4x+3a=(x+1+1a)(x+11a)(x+2+43a)(x+243a)thesameproblemaswitha=0a=1wouldoccuronlyifwecanshortenthisfraction.inthiscase:x+1+1a=x+2+43ax+1+1a=x+243ax+11a=x+2+43ax+11a=x+2+43aa=0a=1a]0;1[:x2+2x+ax2+4x+3aR
Commented by rahul 19 last updated on 29/Apr/18
Thank you sir.
Thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *