Menu Close

let-f-L-1-R-let-u-n-a-b-f-t-sin-nt-dt-v-n-a-b-f-t-t-sin-nt-1-Prove-that-lim-n-u-n-0-2-Deduce-in-term-of-a-b-f-0-the-value-of-lim-n-v-n-




Question Number 80334 by ~blr237~ last updated on 02/Feb/20
 let   f∈L^1 (R)     let  u_n = ∫_a ^b f(t)sin(nt)dt , v_n =∫_a ^b ((f(t))/t)sin(nt)   1)Prove that  lim_(n→∞)  u_n =0  2)Deduce  in term of a,b,f(0) the value of  lim_(n→∞)  v_n
letfL1(R)letun=abf(t)sin(nt)dt,vn=abf(t)tsin(nt)1)Provethatlimnun=02)Deduceintermofa,b,f(0)thevalueoflimnvn
Commented by abdomathmax last updated on 02/Feb/20
1)  by parts  u=f and v^′ =sin(nt) ⇒  u_n =[−(1/n)cos(nt)f(t)]_a ^b +(1/n)∫_a ^b  f^′ (t)cos(nt)dt  =(1/n){f(a)cos(na)−f(b)cos(nb)}  +(1/n) ∫_a ^b  f^′ (t)cos(nt)dt ⇒  ∣u_n ∣≤(1/n){f(a)+f(b)} +((m(b−a))/n)→0(n→+∞) with   m=sup∣f^′ (t)∣_(t∈[a,b])
1)bypartsu=fandv=sin(nt)un=[1ncos(nt)f(t)]ab+1nabf(t)cos(nt)dt=1n{f(a)cos(na)f(b)cos(nb)}+1nabf(t)cos(nt)dtun∣⩽1n{f(a)+f(b)}+m(ba)n0(n+)withm=supf(t)t[a,b]

Leave a Reply

Your email address will not be published. Required fields are marked *