Menu Close

Let-F-n-2-2-n-1-the-fermat-number-Prove-that-F-n-is-prime-3-F-n-1-2-1-F-n-




Question Number 146072 by savitar last updated on 10/Jul/21
Let F_n =2^2^n  +1 the fermat number  Prove that   F_n  is prime ⇔ 3^((F_n −1)/2) ≡1[F_n ]
$${Let}\:{F}_{{n}} =\mathrm{2}^{\mathrm{2}^{{n}} } +\mathrm{1}\:{the}\:{fermat}\:{number} \\ $$$${Prove}\:{that} \\ $$$$\:{F}_{{n}} \:{is}\:{prime}\:\Leftrightarrow\:\mathrm{3}^{\frac{{F}_{{n}} −\mathrm{1}}{\mathrm{2}}} \equiv\mathrm{1}\left[{F}_{{n}} \right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *