Menu Close

let-f-n-a-0-a-x-n-a-2-x-2-dx-with-a-gt-0-1-determine-a-explicit-form-of-f-a-2-let-g-n-a-f-a-give-g-n-a-at-form-of-integral-and-give-its-value-3-find-the-value-of-0-2-




Question Number 61229 by maxmathsup by imad last updated on 30/May/19
let f_n (a) =∫_0 ^a  x^n (√(a^2 −x^2 ))dx  with a>0  1) determine a explicit form of f(a)  2) let g_n (a) =f^′ (a)   give g_n (a) at form of integral and give its  value   3) find the value of  ∫_0 ^2  x^3 (√(4−x^2 ))dx  and ∫_0 ^(√3) x^4 (√(3−x^2 ))dx
letfn(a)=0axna2x2dxwitha>01)determineaexplicitformoff(a)2)letgn(a)=f(a)givegn(a)atformofintegralandgiveitsvalue3)findthevalueof02x34x2dxand03x43x2dx
Answered by perlman last updated on 30/May/19
1) put x=asin(t)  fn(a)=a^(n+1) ∫_0 ^(π/2) sin^n (t)(√((a^2 −a^2 sin^2 (t) )) cos(t)dt=  =a^(n+2) ∫_0 ^(π/2) sin^n (t)cos^2 (t)dt=a∫sin^n (t)dt−a^(n+2) ∫sin^(n+2) (t)dt  let I_n =∫_0 ^(π/2) sin^n (t)dt=∫sin(t)sin^(n−1) (t)dt=[−cos(t)sin^(n−1) (t)]+(n−1)∫cos^2 (t)sin^(n−2) (t)dt  (n−1)∫_0 ^(π/2) (1−sin^2 (t))sin^((n−2)) (t)dt=(n−1)I_(n−2) −(n−1)I_n =I_n   I_n =((n−1)/n)I_(n−2)   I_0 =(π/2)  I_1 =1  I_(2n) =((2n−1)/(2n))I_(2(n−1))   I_(2n) =((2n−1)/(2n)).((2(n−1)−1)/(2(n−1)))......((2−1)/2)I_0 =(((2n−1)(2n−3)....(1))/(2n.2(n−1)....2(1)))I_0   =((2n(2n−1)(2n−2).......1)/([2^n n!]^2 ))I_0 =(((2n)!)/(2^(2n) (n!)^2 ))(π/2)  I_(2n+1) =((2n)/(2n+1))I_(2n−1) =((2n)/(2n+1)).((2n−2)/(2n−1))......(2/3)I_1 =(((2^n n!)^2 .2)/((2n+1)!))=((2^(2n+1) (n!)^2 )/((2n+1)!))  fn(a)=a^(n+2) (I_n −I_(n+2) )  gn(a)=(d/da)∫_0 ^a x^n (√((a^2 −x^2 )))dx=(d/da)∫_0 ^1 a^n t^n a^2 (√((1−t^2 )))dt=∫_0 ^1 (d/da)(a^(n+2) t^n (√((1−t^2 )) dt)=  (n+2)∫_0 ^1 a^(n+1) t^n (√((1−t^2 )) dt  ∫_0 ^2 x^3 (√((4−x^2 )))dx  n=3 a=2   =2^5 (I1−I3)=2^5 (1−(2/3))=((32)/3)
1)putx=asin(t)fn(a)=an+10π2sinn(t)(a2a2sin2(t)cos(t)dt==an+20π2sinn(t)cos2(t)dt=asinn(t)dtan+2sinn+2(t)dtletIn=0π2sinn(t)dt=sin(t)sinn1(t)dt=[cos(t)sinn1(t)]+(n1)cos2(t)sinn2(t)dt(n1)0π2(1sin2(t))sin(n2)(t)dt=(n1)In2(n1)In=InIn=n1nIn2I0=π2I1=1I2n=2n12nI2(n1)I2n=2n12n.2(n1)12(n1)212I0=(2n1)(2n3).(1)2n.2(n1).2(1)I0=2n(2n1)(2n2).1[2nn!]2I0=(2n)!22n(n!)2π2I2n+1=2n2n+1I2n1=2n2n+1.2n22n123I1=(2nn!)2.2(2n+1)!=22n+1(n!)2(2n+1)!fn(a)=an+2(InIn+2)gn(a)=dda0axn(a2x2)dx=dda01antna2(1t2)dt=01dda(an+2tn(1t2dt)=(n+2)01an+1tn(1t2dt02x3(4x2)dxn=3a=2=25(I1I3)=25(123)=323
Commented by maxmathsup by imad last updated on 31/May/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *