let-f-n-a-0-a-x-n-a-2-x-2-dx-with-a-gt-0-1-determine-a-explicit-form-of-f-a-2-let-g-n-a-f-a-give-g-n-a-at-form-of-integral-and-give-its-value-3-find-the-value-of-0-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 61229 by maxmathsup by imad last updated on 30/May/19 letfn(a)=∫0axna2−x2dxwitha>01)determineaexplicitformoff(a)2)letgn(a)=f′(a)givegn(a)atformofintegralandgiveitsvalue3)findthevalueof∫02x34−x2dxand∫03x43−x2dx Answered by perlman last updated on 30/May/19 1)putx=asin(t)fn(a)=an+1∫0π2sinn(t)(a2−a2sin2(t)cos(t)dt==an+2∫0π2sinn(t)cos2(t)dt=a∫sinn(t)dt−an+2∫sinn+2(t)dtletIn=∫0π2sinn(t)dt=∫sin(t)sinn−1(t)dt=[−cos(t)sinn−1(t)]+(n−1)∫cos2(t)sinn−2(t)dt(n−1)∫0π2(1−sin2(t))sin(n−2)(t)dt=(n−1)In−2−(n−1)In=InIn=n−1nIn−2I0=π2I1=1I2n=2n−12nI2(n−1)I2n=2n−12n.2(n−1)−12(n−1)……2−12I0=(2n−1)(2n−3)….(1)2n.2(n−1)….2(1)I0=2n(2n−1)(2n−2)…….1[2nn!]2I0=(2n)!22n(n!)2π2I2n+1=2n2n+1I2n−1=2n2n+1.2n−22n−1……23I1=(2nn!)2.2(2n+1)!=22n+1(n!)2(2n+1)!fn(a)=an+2(In−In+2)gn(a)=dda∫0axn(a2−x2)dx=dda∫01antna2(1−t2)dt=∫01dda(an+2tn(1−t2dt)=(n+2)∫01an+1tn(1−t2dt∫02x3(4−x2)dxn=3a=2=25(I1−I3)=25(1−23)=323 Commented by maxmathsup by imad last updated on 31/May/19 thankssir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: elementary-mathematics-if-13-9-51-k-1-k-N-then-k-min-Next Next post: calculus-I-please-evaluate-0-1-1-1-x-6-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.