Menu Close

let-f-n-a-cos-nx-x-2-x-a-2-dx-with-a-1-1-find-a-explicit-form-of-f-n-a-2-study-the-convervenge-of-f-n-a-3-determine-also-g-n-a-cos-nx




Question Number 61884 by maxmathsup by imad last updated on 10/Jun/19
let f_n (a) =∫_(−∞) ^(+∞)    ((cos(nx))/((x^2 +x  +a)^2 ))dx    with   a≥1  1) find a explicit form of f_n (a)  2)study the convervenge of Σ f_n (a)  3) determine also g_n (a) =  ∫_(−∞) ^(+∞)    ((cos(nx))/((x^2  +x+a)^3 ))dx  study the convergence of Σ gn(a)
letfn(a)=+cos(nx)(x2+x+a)2dxwitha11)findaexplicitformoffn(a)2)studytheconvervengeofΣfn(a)3)determinealsogn(a)=+cos(nx)(x2+x+a)3dxstudytheconvergenceofΣgn(a)
Commented by maxmathsup by imad last updated on 11/Jun/19
1) we have f_n (a) =Re( ∫_(−∞) ^(+∞)   (e^(inx) /((x^2  +x +a)^2 ))) let w(z) =(e^(inz) /((z^2  +z+a)^2 ))  poles of w ?  z^2  +z +a =0 →Δ =1−4a  <0 ⇒ Δ =(i(√(4a−1)))^2  ⇒  z_1 =((−1+i(√(4a−1)))/2)  and z_2 =((−1−i(√(4a−1)))/2)  the poles of w are z_1 and z_2 (doubles)  w(z) = (e^(inz) /((z−z_1 )^2 (z−z_2 )^2 ))  residus theorem give ∫_(−∞) ^(+∞) w(z)dz =2iπ Res(w,z_1 )  Res(w,z_1 ) =lim_(z→z_1 )   (1/((2−1)!)){ (z−z_1 )^2 w(z)}^((1))   =lim_(z→z_1 )    { (e^(inz) /((z−z_2 )^2 ))}^((1))  =lim_(z→z_1 )    ((in e^(inz) (z−z_2 )^2  −2(z−z_2 )e^(inz) )/((z−z_2 )^4 ))  =lim_(z→z_1 )        (((in(z−z_2 )−2}e^(inz) )/((z−z_2 )^3 )) =(({in(z_1 −z_2 )−2)e^(inz_1 ) )/((z_1 −z_2 )^3 ))  =(({ini(√(4a−1))−2}e^(in(((−1+i(√(4a−1)))/2))) )/((i(√(4a−1)))^3 )) =−(((n(√(4a−1)) +2)e^(−((in)/2))  e^(−(n/2)(√(4a−1))) )/(−i(4a−1)(√(4a−1))))  =(((n(√(4a−1))+2)e^(−(n/2)(√(4a−1))) )/(i(4a−1)(√(4a−1)))){ cos((n/(2 )))−i sin((n/2))} ⇒  ∫_(−∞) ^(+∞)  w(z)dz =2iπ (((n(√(4a−1))+2)e^(−(n/2)(√(4a−1))) )/(i(4a−1)(√(4a−1)))) {....} ⇒  f_n (a) =((2π(n(√(4a−1))+2)e^(−(n/2)(√(4a−1))) )/((4a−1)(√(4a−1))))
1)wehavefn(a)=Re(+einx(x2+x+a)2)letw(z)=einz(z2+z+a)2polesofw?z2+z+a=0Δ=14a<0Δ=(i4a1)2z1=1+i4a12andz2=1i4a12thepolesofwarez1andz2(doubles)w(z)=einz(zz1)2(zz2)2residustheoremgive+w(z)dz=2iπRes(w,z1)Res(w,z1)=limzz11(21)!{(zz1)2w(z)}(1)=limzz1{einz(zz2)2}(1)=limzz1ineinz(zz2)22(zz2)einz(zz2)4=limzz1(in(zz2)2}einz(zz2)3={in(z1z2)2)einz1(z1z2)3={ini4a12}ein(1+i4a12)(i4a1)3=(n4a1+2)ein2en24a1i(4a1)4a1=(n4a1+2)en24a1i(4a1)4a1{cos(n2)isin(n2)}+w(z)dz=2iπ(n4a1+2)en24a1i(4a1)4a1{.}fn(a)=2π(n4a1+2)en24a1(4a1)4a1
Commented by maxmathsup by imad last updated on 11/Jun/19
2) we have Σ f_n (a) =Σ((2π(√(4a−1)))/((4a−1)(√(4a−1)))) n e^(−(n/2)(√(4a−1)))  +Σ ((4π)/((4a−1)(√(4a−1)))) e^(−(n/2)(√(4a−1)))   =((2π)/((4a−1)(√(4a−1)))) Σ n (e^(−((√(4a−1))/2)) )^n   +((4π)/((4a−1)(√(4a−1)))) (e^(−((√(4a−1))/2)) )^n   we have ∣e^(−((√(4a−1))/2)) ∣<1    and Σ x^n    , Σnx^n  convergs ⇒Σ f_n  converges
2)wehaveΣfn(a)=Σ2π4a1(4a1)4a1nen24a1+Σ4π(4a1)4a1en24a1=2π(4a1)4a1Σn(e4a12)n+4π(4a1)4a1(e4a12)nwehavee4a12∣<1andΣxn,ΣnxnconvergsΣfnconverges
Commented by maxmathsup by imad last updated on 11/Jun/19
3) we have f_n ^′ (a) =∫_(−∞) ^(+∞)   (∂/∂a)(((cos(nx))/((x^2  +x+a)^2 )))dx  =−∫_(−∞) ^(+∞)   ((2(x^2  +x+a))/((x^2  +x+a)^4 )) cos(nx)dx =−2 ∫_(−∞) ^(+∞)    ((cos(nx))/((x^2  +x+a)^2 )) dx =−2g_n (a) ⇒  g_n (a) =−(1/2) f_n ^′ (a)    rest to calculate f^′ n(a)....
3)wehavefn(a)=+a(cos(nx)(x2+x+a)2)dx=+2(x2+x+a)(x2+x+a)4cos(nx)dx=2+cos(nx)(x2+x+a)2dx=2gn(a)gn(a)=12fn(a)resttocalculatefn(a).

Leave a Reply

Your email address will not be published. Required fields are marked *