Menu Close

let-f-n-a-sin-x-n-x-2-a-2-dx-with-a-positif-real-not-0-and-n-from-N-1-find-a-explicit-form-of-f-a-2-calculate-g-n-a-sin-x-n-x-2-a-2-2-dx




Question Number 56699 by maxmathsup by imad last updated on 21/Mar/19
let f_n (a)=∫_(−∞) ^∞   ((sin(x^n ))/(x^2  +a^2 )) dx   with a positif real not 0  and n from N  1) find a explicit form of f(a)  2)  calculate g_n (a) =∫_(−∞) ^(+∞)    ((sin(x^n ))/((x^2  +a^2 )^2 ))dx  3) calculate  ∫_(−∞) ^(+∞)    ((sin(x^3 ))/(x^2  +4)) dx and ∫_(−∞) ^(+∞)   ((sin(x^2 ))/(x^2  +9))dx  4) calculate ∫_(−∞) ^(+∞)    ((sin(x^3 ))/((x^2  +4)^2 ))dx .
letfn(a)=sin(xn)x2+a2dxwithapositifrealnot0andnfromN1)findaexplicitformoff(a)2)calculategn(a)=+sin(xn)(x2+a2)2dx3)calculate+sin(x3)x2+4dxand+sin(x2)x2+9dx4)calculate+sin(x3)(x2+4)2dx.
Commented by maxmathsup by imad last updated on 23/Mar/19
1)we have f_n (a) =Im( ∫_(−∞) ^(+∞)   (e^(ix^n ) /(x^2  +a^2 ))dx)  let consider the complex function  ϕ(z) =(e^(iz^n ) /(z^2  +a^2 )) ⇒ϕ(z)=(e^(iz^n ) /((z−ia)(z+ia))) so the poles of ϕ are ia and −ia  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ia)  Res(ϕ,ia) =lim_(z→ia) (z−ia)ϕ(z)= (e^(i(ia)^n ) /(2ia)) =(e^(i^(n+1) a^n ) /(2ia)) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (e^(i^(n+1) a^n ) /(2ia)) =(π/a) e^(i^(n+1) a^n )   if n is even n=2p ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =(π/a) e^(i^(2p+1) a^n ) =(π/a) e^(i(−1)^p a^(2p) )   =(π/a){cos((−1)^p  a^(2p)  +isin((−1)^p a^(2p) } ⇒f_n (a) =(π/a) sin((−1)^p a^(2p) )  (n=2p)  if n is odd  ⇒n=2p+1 ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =(π/a) e^(i^(2p+2) a^(2p+1) ) =(π/a) e^((−1)^(p+1) a^(2p+1) )  ⇒  f_n (a) =0  2) we have by derivation f_n ^′ (a) = ∫_(−∞) ^(+∞)  (∂/∂a)(((sin(x^n ))/(x^2  +a^2 )))dx  =−∫_(−∞) ^(+∞)   ((2a sin(x^n ))/((x^2  +a^2 )^2 )) dx =−2a g_n (a) ⇒g_n (a)=−(1/(2a)) f_n ^′ (a)  g_(2p) (a) =−(1/(2a)) f_(2p) ^′ (a) =−(1/(2a)) {−(π/a^2 ) sin{(−1)^p a^(2p) }+(π/a)(2p)(−1)^p a^(2p−1) cos{(−1)^p a^(2p) }  =(π/(2a^3 )) sin{(−1)^p  a^(2p) } +((pπ)/a^2 ) (−1)^(p+1)  a^(2p−1)  cos{(−1)^p  a^(2p) }  g_(2p+1) (a) =0  due to f_(2p+1) (a)=0 .  3) ∫_(−∞) ^(+∞)    ((sin(x^3 ))/(x^2  +4)) dx =f_3 (2)=0 because 3 is odd.  ∫_(−∞) ^(+∞)    ((sin(x^2 ))/(x^2  +9)) =f_2 (3) =(π/3) sin(−9) =−(π/3) sin(9) .
1)wehavefn(a)=Im(+eixnx2+a2dx)letconsiderthecomplexfunctionφ(z)=eiznz2+a2φ(z)=eizn(zia)(z+ia)sothepolesofφareiaandiaresidustheoremgive+φ(z)dz=2iπRes(φ,ia)Res(φ,ia)=limzia(zia)φ(z)=ei(ia)n2ia=ein+1an2ia+φ(z)dz=2iπein+1an2ia=πaein+1anifnisevenn=2p+φ(z)dz=πaei2p+1an=πaei(1)pa2p=πa{cos((1)pa2p+isin((1)pa2p}fn(a)=πasin((1)pa2p)(n=2p)ifnisoddn=2p+1+φ(z)dz=πaei2p+2a2p+1=πae(1)p+1a2p+1fn(a)=02)wehavebyderivationfn(a)=+a(sin(xn)x2+a2)dx=+2asin(xn)(x2+a2)2dx=2agn(a)gn(a)=12afn(a)g2p(a)=12af2p(a)=12a{πa2sin{(1)pa2p}+πa(2p)(1)pa2p1cos{(1)pa2p}=π2a3sin{(1)pa2p}+pπa2(1)p+1a2p1cos{(1)pa2p}g2p+1(a)=0duetof2p+1(a)=0.3)+sin(x3)x2+4dx=f3(2)=0because3isodd.+sin(x2)x2+9=f2(3)=π3sin(9)=π3sin(9).
Commented by maxmathsup by imad last updated on 23/Mar/19
4) ∫_(−∞) ^(+∞)   ((sin(x^3 ))/((x^2  +4)^2 ))dx =g_3 (2)=0 because 3 is odd.
4)+sin(x3)(x2+4)2dx=g3(2)=0because3isodd.

Leave a Reply

Your email address will not be published. Required fields are marked *