let-f-n-a-sin-x-n-x-2-a-2-dx-with-a-positif-real-not-0-and-n-from-N-1-find-a-explicit-form-of-f-a-2-calculate-g-n-a-sin-x-n-x-2-a-2-2-dx Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 56699 by maxmathsup by imad last updated on 21/Mar/19 letfn(a)=∫−∞∞sin(xn)x2+a2dxwithapositifrealnot0andnfromN1)findaexplicitformoff(a)2)calculategn(a)=∫−∞+∞sin(xn)(x2+a2)2dx3)calculate∫−∞+∞sin(x3)x2+4dxand∫−∞+∞sin(x2)x2+9dx4)calculate∫−∞+∞sin(x3)(x2+4)2dx. Commented by maxmathsup by imad last updated on 23/Mar/19 1)wehavefn(a)=Im(∫−∞+∞eixnx2+a2dx)letconsiderthecomplexfunctionφ(z)=eiznz2+a2⇒φ(z)=eizn(z−ia)(z+ia)sothepolesofφareiaand−iaresidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,ia)Res(φ,ia)=limz→ia(z−ia)φ(z)=ei(ia)n2ia=ein+1an2ia⇒∫−∞+∞φ(z)dz=2iπein+1an2ia=πaein+1anifnisevenn=2p⇒∫−∞+∞φ(z)dz=πaei2p+1an=πaei(−1)pa2p=πa{cos((−1)pa2p+isin((−1)pa2p}⇒fn(a)=πasin((−1)pa2p)(n=2p)ifnisodd⇒n=2p+1⇒∫−∞+∞φ(z)dz=πaei2p+2a2p+1=πae(−1)p+1a2p+1⇒fn(a)=02)wehavebyderivationfn′(a)=∫−∞+∞∂∂a(sin(xn)x2+a2)dx=−∫−∞+∞2asin(xn)(x2+a2)2dx=−2agn(a)⇒gn(a)=−12afn′(a)g2p(a)=−12af2p′(a)=−12a{−πa2sin{(−1)pa2p}+πa(2p)(−1)pa2p−1cos{(−1)pa2p}=π2a3sin{(−1)pa2p}+pπa2(−1)p+1a2p−1cos{(−1)pa2p}g2p+1(a)=0duetof2p+1(a)=0.3)∫−∞+∞sin(x3)x2+4dx=f3(2)=0because3isodd.∫−∞+∞sin(x2)x2+9=f2(3)=π3sin(−9)=−π3sin(9). Commented by maxmathsup by imad last updated on 23/Mar/19 4)∫−∞+∞sin(x3)(x2+4)2dx=g3(2)=0because3isodd. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-0-sin-x-2-x-4-4-dx-Next Next post: find-x-2-x-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.