let-f-n-t-0-dx-x-2-t-2-n-with-n-from-N-and-n-1-1-find-a-explicit-form-of-f-n-t-2-what-is-the-value-of-g-n-t-0-t-dx-x-2-t-2-n-1-3-calculate-0-d Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 56932 by turbo msup by abdo last updated on 27/Mar/19 letfn(t)=∫0∞dx(x2+t2)nwithnfromNandn⩾11.findaexplicitformoffn(t)2.whatisthevalueofgn(t)=∫0∞tdx(x2+t2)n+1?3.calculate∫0∞dx(x2+3)4and∫0∞dx(x2+16)3 Answered by Smail last updated on 27/Mar/19 letx=t×tanθ⇒dx=tdθcos2θfn(t)=∫0π/2tt2ncos2θ(1+tan2θ)ndθ=t1−2n∫0π/2cos2(n−1)θdθletAn−1=∫0π/2cos2(n−1)θdθ=∫0π/2(cos2(n−2)θ−sin2θcos2(n−2)θ)dθBypartsu=sinθ⇒u′=cosθv′=sinθcos2n−4θ⇒v=−12n−3cos2n−3An−1=An−2−12n−3An−1An−1=2n−32n−2An−2=(2n−3)(2n−5)(2n−2)(2n−4)An−3=(2(n−1)−1)(2(n−2)−1)(2(n−3)−1)…(2(n−(n−1))−1)(2(n−1))(2(n−2))…(2(n−(n−1))An−(n−1)=(2n−3)(2n−5)(2n−7)…12n−1(n−1)!∫0π/2cos2θdθ=(2n−2)(2n−3)(2n−4)(2n−5)(2n−6)…12n−1(n−1)!×2n−1(n−1)!×12[θ+12sin2θ]0π/2=(2n−2)!22(n−1)((n−1)!)2×π2×2An−1=π(2n−2)!22n((n−1)!)2fn(t)=t1−2n×π(2n−2)!22n((n−1)!)2fn(t)=π(2n−2)!22n((n−1)!)2t1−2n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-x-2-1-x-2-x-3-2-dx-Next Next post: I-sin-3-cosx-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.