Menu Close

let-f-n-t-0-dx-x-2-t-2-n-with-n-from-N-and-n-1-1-find-a-explicit-form-of-f-n-t-2-what-is-the-value-of-g-n-t-0-t-dx-x-2-t-2-n-1-3-calculate-0-d




Question Number 56932 by turbo msup by abdo last updated on 27/Mar/19
let f_n (t) =∫_0 ^∞    (dx/((x^2  +t^2 )^n ))  with n from N and n≥1  1. find a explicit form of f_n (t)  2. what is the value of  g_n (t)=∫_0 ^∞  ((t dx)/((x^2 +t^2 )^(n+1) )) ?  3. calculate ∫_0 ^∞    (dx/((x^2 +3)^4 ))  and ∫_0 ^∞     (dx/((x^2  +16)^3 ))
letfn(t)=0dx(x2+t2)nwithnfromNandn11.findaexplicitformoffn(t)2.whatisthevalueofgn(t)=0tdx(x2+t2)n+1?3.calculate0dx(x2+3)4and0dx(x2+16)3
Answered by Smail last updated on 27/Mar/19
let  x=t×tanθ⇒dx=((tdθ)/(cos^2 θ))  f_n (t)=∫_0 ^(π/2) (t/(t^(2n) cos^2 θ(1+tan^2 θ)^n ))dθ  =t^(1−2n) ∫_0 ^(π/2) cos^(2(n−1)) θdθ  let  A_(n−1) =∫_0 ^(π/2) cos^(2(n−1)) θdθ  =∫_0 ^(π/2) (cos^(2(n−2)) θ−sin^2 θcos^(2(n−2)) θ)dθ  By parts  u=sinθ⇒u′=cosθ  v′=sinθcos^(2n−4) θ⇒v=−(1/(2n−3))cos^(2n−3)   A_(n−1) =A_(n−2) −(1/(2n−3))A_(n−1)   A_(n−1) =((2n−3)/(2n−2))A_(n−2) =(((2n−3)(2n−5))/((2n−2)(2n−4)))A_(n−3)   =(((2(n−1)−1)(2(n−2)−1)(2(n−3)−1)...(2(n−(n−1))−1))/((2(n−1))(2(n−2))...(2(n−(n−1))))A_(n−(n−1))   =(((2n−3)(2n−5)(2n−7)...1)/(2^(n−1) (n−1)!))∫_0 ^(π/2) cos^2 θdθ  =(((2n−2)(2n−3)(2n−4)(2n−5)(2n−6)...1)/(2^(n−1) (n−1)!×2^(n−1) (n−1)!))×(1/2)[θ+(1/2)sin2θ]_0 ^(π/2)   =(((2n−2)!)/(2^(2(n−1)) ((n−1)!)^2 ))×(π/(2×2))  A_(n−1) =((π(2n−2)!)/(2^(2n) ((n−1)!)^2 ))  f_n (t)=t^(1−2n) ×((π(2n−2)!)/(2^(2n) ((n−1)!)^2 ))  f_n (t)=((π(2n−2)!)/(2^(2n) ((n−1)!)^2 ))t^(1−2n)
letx=t×tanθdx=tdθcos2θfn(t)=0π/2tt2ncos2θ(1+tan2θ)ndθ=t12n0π/2cos2(n1)θdθletAn1=0π/2cos2(n1)θdθ=0π/2(cos2(n2)θsin2θcos2(n2)θ)dθBypartsu=sinθu=cosθv=sinθcos2n4θv=12n3cos2n3An1=An212n3An1An1=2n32n2An2=(2n3)(2n5)(2n2)(2n4)An3=(2(n1)1)(2(n2)1)(2(n3)1)(2(n(n1))1)(2(n1))(2(n2))(2(n(n1))An(n1)=(2n3)(2n5)(2n7)12n1(n1)!0π/2cos2θdθ=(2n2)(2n3)(2n4)(2n5)(2n6)12n1(n1)!×2n1(n1)!×12[θ+12sin2θ]0π/2=(2n2)!22(n1)((n1)!)2×π2×2An1=π(2n2)!22n((n1)!)2fn(t)=t12n×π(2n2)!22n((n1)!)2fn(t)=π(2n2)!22n((n1)!)2t12n

Leave a Reply

Your email address will not be published. Required fields are marked *