Question Number 48009 by maxmathsup by imad last updated on 18/Nov/18
$${let}\:\:\:{f}_{{n}} \left({t}\right)={t}^{{n}−\mathrm{1}} {sin}\left({n}\theta\right)\:{with}\:{t}\:{from}\left[\mathrm{0},\mathrm{1}\left[\:{and}\:\:\theta\:{from}\:\left[\mathrm{0},\pi\left[\right.\right.\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{uniform}\:{convergence}\:{of}\:\Sigma\:{f}_{{n}} \left({t}\right)\:{on}\:\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{S}\left({t}\right)=\Sigma\:{f}_{{n}} \left({t}\right)\:\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {S}\left({t}\right){dt}. \\ $$